13 research outputs found

    A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial

    Get PDF
    AbstractThe present study is devoted to the development and validation of a nonlinear homogenization approach of the mechanical behavior of Callovo-Oxfordian argillites. The material is modeled as an heterogeneous composite composed of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is obtained by adapting the incremental method proposed by Hill [Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101]. The approach consists in formulating the macroscopic tangent operator of the material by considering the nonlinear local behavior of each phase. Due to the matrix/inclusion morphology of the microstructure of the argillite, a Mori–Tanaka scheme is considered for the localization step. The developed model is first compared to Finite Element calculations and then validated and applied for the prediction of the macroscopic stress–strain responses of argillites

    Differential modulation of myosin heavy chain phenotype in an inactive extensor and flexor muscle of adult rats

    No full text
    The effects of chronic neuromuscular inactivity on the phenotype and size of muscle fibres in a fast ankle extensor (medial gastrocnemius, MG) and a fast ankle flexor (tibialis anterior, TA) muscle of the rat hindlimb were determined. Inactivity was produced by spinal cord isolation (SI), i.e. complete spinal cord transections at a mid-thoracic and high sacral level and bilateral deafferentation between the transection sites. After 90 days of SI, the MG and TA muscle weights were 53 and 45% lower than in age-matched controls. Overall mean fibre sizes in the deep (close to the bone) and superficial (away from the bone) regions were ∌60 and 65% smaller in the MG and ∌40 and 50% smaller in the TA of SI than control rats, respectively. The myosin heavy chain (MHC) composition shifted towards the faster isoforms after SI: the MG showed an increase in both types IIx (20%) and IIb (23%), whereas the TA showed a marked increase in type IIx (94%) and a decrease in type IIb (18%) MHC. Both muscles in SI rats showed no type IIa and only one MG muscle had ∌5% type I MHC. These results show that prolonged inactivity has a stronger effect on a fast extensor compared with a fast flexor in the rat hindlimb. The larger decrease in mass and fibre size in the MG than the TA most probably reflects the larger impact of chronic inactivity on the normally more highly recruited extensor than flexor muscle. The primary shift to type IIb MHC in the MG and type IIx MHC in the TA indicate a different default mode for an inactive extensor vs. flexor muscle, and may reflect differing activity-independent neural influences, i.e. neurotrophic factors, on muscle fibre phenotype in extensors vs. flexors
    corecore