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Abstract

The present study is devoted to the development and validation of a nonlinear homogenization approach of the
mechanical behavior of Callovo-Oxfordian argillites. The material is modeled as an heterogeneous composite composed
of an elastoplastic clay matrix and of linear elastic or elastic damage inclusions. The macroscopic constitutive law is
obtained by adapting the incremental method proposed by Hill [Hill, R., 1965. Continuum micro-mechanics of elastoplas-
tic polycrystals. J. Mech. Phys. Solids 13, 89–101]. The approach consists in formulating the macroscopic tangent operator
of the material by considering the nonlinear local behavior of each phase. Due to the matrix/inclusion morphology of the
microstructure of the argillite, a Mori–Tanaka scheme is considered for the localization step. The developed model is first
compared to Finite Element calculations and then validated and applied for the prediction of the macroscopic stress–strain
responses of argillites.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This study is performed in the general context of the project of underground disposal of radioactive waste,
undertaken by the French National Radioactive Waste Management Agency (ANDRA). Its objective is to
formulate a predictive constitutive model of the Callovo-Oxfordian argillite, a geological material chosen
as one of possible geological barriers to radionuclides. Various phenomenological models have been proposed
in the past for this class of materials. For instance Chiarelli et al. (2003) and Conil et al. (2004) developed a
phenomenological modeling approach which couples plasticity and damage. The plastic behavior is of non-
associated type with a particular emphasis on the plastic dilatancy (positive volumetric strains) while the
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damage component of the model allows to describe the deterioration of the material properties. This model
has been calibrated by making use of data from experiments on the Callovo-Oxfordian argillites and provides
good predictions in terms of macroscopic stress–strain relations corresponding to various monotonic and cyc-
lic compressive loading paths. Despite these predictions, these models are not able to take into account defor-
mation mechanisms related to material heterogeneities.

Therefore, it is useful to develop a more physical modeling approach for this class of materials. The meth-
odology followed in the present study consists to develop a constitutive model of hard clays by making use of a
nonlinear homogenization approach. Various nonlinear homogenization techniques have been developed in
the literature. Mention can be made of the so-called secant formulations by Berveiller and Zaoui (1979); Pon-
te-Castañeda and Suquet (1998); and Tandon and Weng (1988) for which the nonlinear local behavior of each
phase is described by considering a secant stiffness corresponding to an appropriate effective deformation.
More recently, Ponte-Castañeda (1991) and Willis (1989) proposed variational methods which deliver bounds
for the nonlinear macroscopic behavior. However, it must be emphasized that the secant moduli techniques as
well as the variational approach apply only to nonlinear constitutive behaviors deriving from a single poten-
tial, such as nonlinear elasticity or viscoplasticity when elastic effects are neglected. They are also generally
limited to monotonous and radial loading paths.

Owing to the complexity of loading paths which are involved in the project of underground storage of
radioactive waste, we have to adopt an incremental formulation instead of the above mentioned methods.
For this purpose, we consider the Hill incremental method (Hill, 1965) which consists, at each loading step,
in determining the macroscopic tangent moduli from the local tangent behavior of the different constituents.
The incremental approach has been recently considered by various authors for two phase composites; for
instance Chaboche and Kanouté (2005) applied and discussed this method to metals plasticity with classical
J2 theory whereas Doghri and Ouaar (2003) considered also a cyclic plasticity with a nonlinear kinematic
hardening. In these studies, a brief account of the interest of the incremental method is done in comparison
with other methods such as the tangent approaches proposed by Molinari et al. (1987) and Masson et al.
(2000). In particular, by a combination of the basic Hill’s approach with an ‘‘isotropization procedure’’, it
was demonstrated that the method leads to efficient predictions.

The objective of the present study is mainly to implement the incremental method for the modeling of a
three phase material, namely the argillite which is constituted of a plastic clay matrix and elastic or damaged
mineral inclusions. In addition to the coupling between plasticity and damage, the originalities of the study lie
in the consideration of non-associated and dilatant plasticity for the clay matrix and the extensive validation
of the homogenized constitutive law by comparison with experimental data on different loading paths.

The outline of the paper is as follows. In Section 2, we describe the microstructure of the studied material
and present the salient features of its macroscopic mechanical behavior under compressive loadings. Then, the
principle and the formulation of the incremental method in the case of a three phase medium are recalled for
its application to the argillite material (see Section 3). Section 4 is devoted to the formulation of the local
behavior of the different constituents. In particular, a rigorous formulation is proposed in order to include
unilateral effects (due to microcracks closure) in the damage modeling. These local constitutive laws are imple-
mented in the nonlinear homogenization procedure in order to derive the homogenized law which is first val-
idated by comparison with unit cell (Finite Element) calculations. In the last section, the proposed model is
calibrated and experimentally validated for the Callovo-Oxfordian argillite.
2. Experimental observations on the Callovo-Oxfordian argillite behavior

2.1. Microstructure and mineralogical composition of the material

The material studied here is a sedimentary rock called Callovo-Oxfordian argillite, from the site where the
underground research laboratory for nuclear waste disposal is operated by ANDRA. The Callovo-Oxfordian
argillite layer is about 130 m thick referred by ANDRA as C2. Five lithostratigraphic units are characterized
by different facies and mineralogical composition, subscripted C2a, C2b1, C2b2, C2c, and C2d, from base to
top. Only three units of Oxfordian age (C2b1, C2b2, and C2c) are dealt with here and named depth 1, 2, and 3.
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Experimental tests have been conducted on samples cored from the borehole EST 104 and from depth 1
between 451.4 to 466.8 m, depth 2 between 468.9 to 469.1 m, and depth 3 between 482.1 to 482.4 m.

Mineralogical compositions, initial porosity, and natural water content of samples were first investigated.
Mineralogy was obtained from results of X-ray diffractometry and calcimetry that showed a composition of
quartz (23% average), calcite (28% average), and clay minerals (45% average) together with subordinate feld-
spars, pyrite, and iron oxides (5% average). The clay minerals composition is relatively constant at 65% I/S
(illite–smectite interstratified minerals), 30–35% illite, and 0–5% kaolinite and chlorite. We can notice a var-
iation in mineralogical composition with depth as we can see in Fig. 1.

At the microscopic level, quartz and large calcite grains are scattered in a fine matrix of clay minerals and
calcite which acts to cement the larger grains (see Fig. 2). Mineral grains have principally a rounded shape and
a dimension between 10 and 40 lm. The clay minerals are grouped in clusters of some microns large that can
coat very well the grain form.

From microstructural observations, Gasc (1999) has observed the presence of clay particles in the layer of
sheets, including quartz and calcite crystal grains. She noted that the carbonated phase does not constitute a
cement but is organized in grains spread in a clay matrix. Chiarelli et al. (2003) remark in the same way that
quartz and calcite grains are tied to the clay matrix. In Fig. 2, we observe that calcite and quartz particles are
dispersed in the clayed matrix.

The first stage of the homogenization procedure is the definition of the representative volume element
(r.v.e.). The previous analyses lead us to consider the argillite as a three phase composite of inclusion/matrix
type in which we discern the calcite and quartz phases supposed spherical and distributed isolately in a clay
matrix.

Other microstructural observations bring to light a lot of clay minerals extruded. This could be due to a
relative slide movement between the slices provoking the manifestation of residual plastic deformations
observed during macroscopic tests in the axial and lateral directions after unloading.

Relying on microscopic analysis, it can be remarked as well that mechanical properties of the argillite min-
erals are very contrasted (the Young modulus for quartz and calcite is about 100 GPa whereas the clay matrix
Fig. 1. Mineral compositions and basic properties of Callovo-Oxfordian argillite.

Fig. 2. Micrography of a typical Callovo-Oxfordian argillite structure: calcite grains (C), quartz grains (tectosilicates) (T), and clay matrix
(MA).



Fig. 3. Micrography of a calcite grain with transgranular fractures.
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has a modulus which value is about 10 GPa). In that manner, it can lead to high local deformations in the clay
matrix regarding to those in the calcite and quartz grains. This contrast leads to shearing stress concentration
in the interfaces and can generate microcracks by decohesion at the grains/matrix boundaries or transgranular
fractures. The cracking inside the grains are mainly visible in the calcite (Fig. 3) in which a network of micro-
cracks randomly oriented and quite uniformly distributed can be observed. For the sake of simplicity, we
assume an isotropic damage in this work. We will neglect as well the microcracking by decohesion to suppose
that the only constituent who has an elastic damaged behavior is the calcite. This damage induced by micro-
cracks can explain the degradation of the stiffness in the lateral direction observed during argillite macroscopic
tests.

Therefore, we will suppose after that an isotropic, linear, and elastic behavior for the quartz grains, a dam-
aged elastic behavior for the calcite grains with microcracks randomly distributed and an elastoplastic behav-
ior for the clay matrix.
2.2. Brief summary of the macroscopic behavior of the material

Basic macroscopic behavior of argillite is here briefly recalled in order to show the coherence with micro-
scopic analyses. Hydrostatic and triaxial compression tests have been performed by Chiarelli et al. (2003). The
range of confining pressure is from 0 to 20 MPa, which was chosen according to the estimation of in situ stres-
ses. Unloading–reloading cycles of deviatoric stress were included in each test in order to evaluate the progres-
sive deterioration of elastic stiffness and the macroscopic plastic deformation. The experimental results from
hydrostatic compression tests have shown that there is a small difference of strain between the directions par-
allel and perpendicular to the natural bedding plane (see Chiarelli et al., 2003). This indicates an initial anisot-
ropy of the Callovo-Oxfordian argillite, which seems to be quite small and can be neglected. Triaxial
compression tests have been performed by axial strain controlled path with an average rate of
_e ¼ 6 � 10�6=s. This will justify the quasi static analysis of the material behavior considered in the present
study. It is important to precise here the convention used for the stress–strain diagram.

For a triaxial compression test the matrix of the components of the stress tensor reads in the cartesian basis:
½R� ¼
R11 0 0

0 R33 0

0 0 R33

0
B@

1
CA ð1Þ
where R11 represents the axial stress and R33 the lateral stress. The convention adopted is that R11 and R33 are
positive for tension test and negative for compression test. Typical stress–strain curves from triaxial compres-
sion tests have shown two basic phenomena on the macroscopic mechanical responses of the argillite (Fig. 5).
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Fig. 4. Example of stress–strain curves from an uniaxial compression test with unloading–reloading cycles. Depth 3, with f0 = 60%,
f1 = 26%, and f2 = 14%.
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First, large residual strains are observed both in the axial (E11) and lateral (E33) directions after unloading of
deviatoric stress. This is observed in all the tests including uniaxial compression (Fig. 4).

In connection with the microscopic analysis mentioned above, such irreversible strains are essentially
related to plastic deformation by clay sheet sliding. Secondly, by determination of elastic stiffness during
the unloading–reloading cycles, a progressive decrease of the elastic stiffness is obtained as a function of
applied stress level. The degradation of the stiffness in the lateral direction is more important than in the axial
one. Also, in connection with the analysis of microstructure of the argillite, this degradation of elastic prop-
erties can be considered as a consequence of induced damage by microcracks in calcite phase.

Further, influences of mineralogical composition on mechanical behavior of argillite have also been stud-
ied. The macroscopic elastic modulus increases with calcite content while it decreases with clay content. The
Poisson’s ratio is nearly insensitive to all the mineralogical constituents. Mineralogical compositions strongly
affect both plastic deformation and induced damage. Roughly, at the same stress level, it is found that plastic
strains decrease when calcite content increases, but become more important when quartz or clay content
increases. The induced damage increases with calcite content.

3. Incremental formulation of the homogenized constitutive law

The objective of this section is to formulate the macroscopic constitutive law of the Callovo-Oxfordian
argillite from a nonlinear homogenization approach, namely the Hill’s incremental method (Hill, 1965). After
recalling the basic principle of this nonlinear homogenization method, the computation of the tangent local-
ization operator required for its implementation is detailed.

3.1. Principle of the method

As already stated, the Callovo-Oxfordian argillite can be represented by a three phases composite with dis-
tinct mechanical properties. This material has a matrix–inclusion morphology with phases randomly distrib-
uted, the calcite and quartz minerals being embedded in the clay matrix.

The first step in the homogenization process is the relevant choice of scales for the study of the mechanical
behavior. The microscale (at which the dissipation mechanisms occur) is fixed by the heterogeneities size,
about 10 lm. Considering phenomena at a smaller scale would lead to a model not easy to be implemented
for a engineering analysis. Therefore, it is possible to define a representative volume element (r.v.e.) giving
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Depth 3, with f0 = 60%, f1 = 26%, and f2 = 14%.
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the main statistical informations associated with the repartition and the morphology of the argillite heteroge-
neities. As classically, the conditions for the scale separation are assumed to be fulfilled. This is verified by the
dimensions of the samples tested in the experimental part of the study. In the incremental homogenization
method, adopted in the present study, the r.v.e, named V, is subjected to an uniform strain rate on the bound-
ary (Fig. 6). Vr and fr (where r = 0, 2) are the volume and the volume fraction of the phase r, respectively. The
compact notations �l and �lr will be used to denote the average of a field l in the entire r.v.e. V and that in each
phase Vr, such as
�l ¼ hli ¼
X2

r¼0

fr
�lr; �lr ¼ hlir ¼

1

jV rj

Z
V r

lðxÞdx ð2Þ
The methodology of the incremental method by Hill (1965) consists to derive the overall tangent operator
from the knowledge of the local behaviors. It requires a rate formulation of the local behaviors of the
constituents:
_rðxÞ ¼ LðxÞ : _eðxÞ ð3Þ
Phase 1 : Calcite
(Elastic unilateral damage behavior) 

Phase 0 : Clay matrix
(Elastoplastic behavior) 

Phase 2 : Quartz
(Elastic behavior) 

.
. .

.
x E xε =

Fig. 6. Representative volume element (r.v.e) of the Callovo-Oxfordian argillite.
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Since this local behavior takes the form of a linearized law with nonlinear tangent moduli, it follows that clas-
sical Eshelby-based homogenization procedures (Eshelby, 1957) can be used for the resolution of the problem.
For this purpose, a tangent localization tensor A which relates the local strain rate to the macroscopic strain
rate has to be introduced:
1 (0)
_eðxÞ ¼ AðxÞ : _E ð4Þ
The macroscopic stress rate reads then:
_R ¼ Lhom : _E ð5Þ
where the macroscopic tangent operator Lhom is given by
Lhom ¼ L : Ah i ð6Þ

Further, the homogenization procedure should verify the energy condition of Hill, _R : _E ¼ _r : _e.

3.2. Determination of the anisotropic tangent localization tensor

For the implementation of the incremental method, we need an approximation of the tangent operator in
each phase:

Hypothesis. At any point x of the phase (r),1 the relation between the strain rate and the stress rate can be

approximated by

8x 2 ðrÞ; _rðxÞ ¼ Lr : _eðxÞ ð7Þ
In practice, Lr is evaluated for a reference state er classically chosen as the average of the strain field in the
phase (r). In this way to consider the problem it is assumed that each phase has an uniform moduli while
in reality the strain field around and inside the inclusion is strongly heterogenous. The localization relation
(4) reads then:
_�e
r
¼ Ar : _E ð8Þ
where Ar is the constant localization tensor, in the phase which is computed by using the Mori and Tanaka
(1973) scheme originally devoted to two-phase materials. Furthermore, the calcite and quartz grains are as-
sumed to be spherical inclusions. For multi-phase composite, we adopt a direct extension of the Mori–Tanaka
scheme which may lead in some cases to non-physical results (cf. Benveniste, 1991) but is relevant here because
spherical inclusions are considered. The localization tensor Ar associated with this scheme classically takes the
form:
Ar ¼ Tr :
P

r
frTr

� ��1

Tr ¼ Iþ P0
Ir

: ðdLrÞ
� ��1

dLr ¼ Lr � L0

8>>>><
>>>>:

ð9Þ
in which P0
Ir

is the so-called Hill tensor which depends on both the geometry of the inclusions r (considered
here as spheres) and on the tangent operator L0 of the clay matrix.

Since for the dilute scheme (valid in the case of non-interacting inclusions), the localization tensor Ar coin-
cides with Tr (see Eshelby, 1957), it is clear that the interaction between the different phases is taken into
account in (9) by mean of the term ½

P
rfrTr��1.

As the calcite and quartz grains have the same geometry, we will denote P0
I1
¼ P0

I2
¼ P0

I with:
is the clay phase, (1) is the calcite phase, and (2) the quartz phase.
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P0
I ¼ SEðL0Þ : L�1

0 ð10Þ
Due to the anisotropy of the tangent operator L0, an analytical determination of the Hill tensor P0
I is not pos-

sible in general. A numerical integration procedure is needed (cf. Ghahremani, 1977; Gavazzi and Lagoudas,
1990).

Reporting (9) into (6), the homogenized tangent operator is then written as follows:
Lhom ¼
X

r

frLr : Ar; r ¼ 0 to 2 ð11Þ
where fr is the concentration of the phase (r).
The application of the incremental method requires to determine the tangent operators of the different

phases. The tangent moduli L0 associated with the plastic matrix and L1 with the damaged elastic phase will
be determined in the next section (see relations (25) and (45), respectively). The tangent operator of the elastic
phase is noted as L2 equal to the elastic stiffness of the constituent.

4. Modeling of the local constituents behaviors

Based on the microstructural observations and mechanical data, as underlined before (see Section 2.1), the
clay matrix is modeled as an elastoplastic constituent while the quartz is considered as linear elastic and the
behavior of calcite grains is described by means of an elastic damage model. For the calcite phase a particular
attention is paid to the consideration of the unilateral effect due to damage.

4.1. Elastoplastic behavior of the clay phase

An elastoplastic behavior is assumed for the clay matrix. A non-associated plastic model based on a Druc-
ker–Prager criterion with isotropic hardening is proposed (Drucker and Prager, 1952). As classically, the free
energy associated with the elastoplastic behavior is the sum of the elastic strain energy and the locked energy
due to plastic hardening Wc(cp):
W ðe; bÞ ¼ 1
2
ðe� epÞ : C : ðe� epÞ þ W cðcpÞ ð12Þ
ep denotes the plastic strain tensor and cp represents the scalar internal variable for isotropic hardening. The
set of internal variables can be written in the symbolic form: b = (ep,cp). C is the elastic stiffness tensor of the
clay matrix which is assumed isotropic: C ¼ 3kJþ 2lK. The positive scalars k and l are the elastic bulk and
shear moduli, respectively; J and K the spherical and deviatoric operators, respectively. J ¼ 1

3
1� 1 and

K ¼ I� J. The terms 1 and I denote the second and fourth order symmetric identity tensor, respectively.
The state laws are obtained by standard derivation of the free energy with respect to the associated internal

variables:
rðe; bÞ ¼ oW
oe
¼ C : ðe� epÞ ð13Þ

F pðe; bÞ ¼ � oW
oep
¼ r ð14Þ

F cðe; bÞ ¼ � oW
ocp
¼ � oW c

ocp
¼ �apðcpÞ ð15Þ
ap is the thermodynamical force associated to the hardening variable cp. As the mechanical behavior of the
clay matrix prior to failure state is generally not elastic, an elastic perfect plastic model is not suitable. An
appropriate plastic hardening law is needed. In the present model, the plastic hardening process is described
by the variation of ap from its initial threshold ap

0 (at the elastic limit state) to the ultimate value ap
m when the

failure state is reached. The evolution law of ap is experimentally determined and the following exponential
form is here adopted:
apðcpÞ ¼ ap
m � ðap

m � ap
0Þe�bcp ð16Þ



1414 A. Abou-Chakra Guéry et al. / International Journal of Solids and Structures 45 (2008) 1406–1429
The parameter b controls the kinetics of the evolution of plastic hardening. Taking into account the proposed
hardening law, the yield function is expressed as follows:
f ðF p; F c; cpÞ ¼ f ðr; cpÞ ¼ qþ apðcpÞðp � cpÞ ð17Þ
The parameter cp corresponds to hydrostatic tensile strength related to material cohesion. We can see that the
thermodynamic force ap physically represents the current mobilized frictional coefficient of clay matrix. As in
the classical Drucker–Drucker approach, the yield surface defined by (17) depends on two basic stress invar-

iants only, namely the mean stress p = tr(r)/3 and the equivalent stress q ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2
s : s

q
, s being the deviatoric

stress tensor. It is useful to point out that the plastic behavior of geomaterials in general loading condition
also depends on the third stress invariant, the Lode angle. Keeping in mind that the main topic of the work
is to develop a nonlinear homogenization method for heterogeneous geomaterials, the local behavior of con-
stituent is kept as simple as possible. For this purpose and for the sake of simplicity, the effect of Lode angle is
not taken into account in the local plastic model for the clay matrix. However, it is easy to improve the pro-
posed model by introducing an additional term in the yield function depending on the Lode angle. Further, the
macroscopic behavior of the argillite depends not only on the behavior of the clay matrix, but also on the dam-
age behavior of calcite grains. The damage behavior is sensitive to loading path, and for example exhibits a
dissymmetric behavior in tension and compression. Therefore, the macroscopic response of the homogenized
argillite will also depend on loading path orientation. This reduces in some way the consequence of the sim-
plification made on the local plastic model for the clay matrix.

For most geomaterials, the plastic flow (given by the plastic potential) does not comply with the normality
rule. Plastic volumetric strain generally exhibits a transition from compressibility regime to dilation according
to loading path. Therefore, for the flow rule we need to introduce this plastic potential, proposed in the form:
F ðr; cpÞ ¼ qþ bpðcpÞp ð18Þ
The coefficient bp controls the rate of plastic volumetric strain; we have dilatancy for bp > 0 and compressibil-
ity for bp

6 0. As the volumetric strain rate generally varies with plastic deformation history, it is assumed that
the coefficient bp is a function of the plastic hardening variable; that is
bpðcpÞ ¼ bp
m � ðb

p
m � bp

0Þe�b0cp ð19Þ

in which bp

m and bp
0 are, respectively, the initial and final dilatancy parameter.

The non-associated plastic flow rule is expressed as follows:
_ep ¼ _c
oF
or
¼ _c

bp

3
1þ

ffiffiffi
3

2

r
sffiffiffiffiffiffiffiffis : sp

 !
ð20Þ
As a deviatoric plastic mechanism is of concerns here, the plastic hardening variable cp of frictional materials
is classically chosen as the generalized plastic distortion defined by
_cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
devð_epÞ : dev _ep

� �r
ð21Þ

¼ _c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
dev

oF
or

 !
: dev

oF
or

 !vuut ¼ _c ð22Þ
where devð_epÞ is the deviatoric part of _ep. By calculating the derivatives of yield function to stresses, the plastic
flow rule can be written as
_ep ¼ _c oF
or
¼ _c bp

3
1þ

ffiffiffi
3
2

r
sffiffiffiffiffiffiffiffis : sp

	 

_cp ¼ _c

_c ¼ 0 if f ðr; cpÞ 6 0; _f ðr; cpÞ < 0

_c > 0 if f ðr; cpÞ ¼ 0; _f ðr; cpÞ ¼ 0

8>>>>>><
>>>>>>:

ð23Þ
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The plastic multiplier _c is determined by using the plastic consistency condition. The rate form of the consti-
tutive equations, obtained by time derivation of the stress tensor r, takes then the following form:
_r ¼ L : _e ð24Þ
where the tangent modulus L is computed by using the standard consistency condition and the relations (17)
and (18):
L0 ¼

C if f ðr; cpÞ 6 0; _f ðr; cpÞ < 0

C�
C:oF

or
�
of
or

:C

h
if f ðr; cpÞ ¼ 0; _f ðr; cpÞ ¼ 0

8>><
>>: ð25Þ

with; h ¼ of
or

: C :
oF
or
� of

ocp
ð26Þ
In case of isotropic hardening and by making use of relations (17) and (18), the following expression is
obtained:
L0 ¼ 3k1Jþ 2k2K� 2k3n� 1� 2k41� n� 2k5n� n
with the parameters ki, i = 1, . . ., 5, given by
k1 ¼ k 1� apbpk
h

	 

; k2 ¼ l; k3 ¼

l
h

ffiffiffi
2

3

r
apk; k4 ¼

l
h

ffiffiffi
2

3

r
bpk; k5 ¼

6l
h

The other quantities read: n ¼
sffiffiffiffi
s:s
p and scalar h ¼ apbpk þ 3l� ðp � cpÞ dap

dcp.

4.2. Elastic unilateral damage behavior of the calcite phase

In this subsection we propose to formulate an isotropic damage model for calcite phase, accounting for uni-
lateral effects due to microcracks closure. It is well known that the mechanical response of a microcracked
medium strongly depends on the opening and closure status of the existing defects in the material. It should
be first noted that the consideration of the unilateral effects in Continuum Damage Mechanics (CDM) frame-
work still constitutes a challenging task. The main difficulty lies in the necessity to predict both continuous
response of the material and partial or total recovery of the elastic constants during the microcracks closure
process. We propose here a mathematically rigorous and physically-motivated model based on micromechan-
ical considerations.

It is assumed here that the nonlinear behavior is caused by the growth of microcracks. Since the micro-
cracks are expected to be randomly oriented, the damage state is represented by a positive scalar variable d

which corresponds to the microcracks density parameter (see Budiansky and O’Connell, 1976) in the calcite
grains. As classically, the elastic damage behavior is characterized by the existence of a thermodynamical
potential (free energy) which depends on the internal variable d and the strain tensor e:
W ðe; dÞ ¼ 1
2
e : CðdÞ : e ð27Þ
where CðdÞ represents the isotropic stiffness tensor of the damaged grains. This potential must be continuously
differentiable with respect to the strain tensor to assure the existence of the state laws which give: the stress
tensor r (e,d)
rðe; dÞ ¼ oW
oe
ðe; dÞ ð28Þ
and the thermodynamical force Fd(e,d) associated to the damage variable:
F dðe; dÞ ¼ � oW
od
ðe; dÞ ð29Þ
For modeling the unilateral damage of the calcite the stiffness tensor is separately described when the micro-
cracks are opened or closed by CoðdÞ and Cf ðdÞ, respectively. The simplest partition of the strain space into
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two half-spaces is provided by a hyperplan g which depends on e. It is assumed that the opening and closure
state does not depend on the microcracks density parameter but only on the strain state. Therefore, the micro-
cracks are opened if g(e) > 0 and closed if g(e) 6 0. The isotropic stiffness tensor of the damaged grains takes
then the following form:
CðdÞ ¼
CoðdÞ ¼ 3KoðdÞJþ 2GoðdÞK if gðeÞ > 0

Cf ðdÞ ¼ 3Kf ðdÞJþ 2Gf ðdÞK if gðeÞ 6 0

(
ð30Þ
(Ko,Go) and (Kf,Gf) moduli represent the compressibility and shear moduli for opened and closed microcracks,
respectively. Since the thermodynamical potential has to be continuously differentiable, (Ko,Go) and (Kf,Gf)
must fulfill some conditions. Curnier et al. (1995) (see also Welemane and Cormery, 2003) have demonstrated
that the elastic energy function W is C1 continuous if and only if:
½CðdÞ� ¼ CoðdÞ � Cf ðdÞ ¼ sðdÞ og
oe
ðeÞ � og

oe
ðeÞ; 8ejgðeÞ ¼ 0 ð31Þ
where s is a continuous scalar valued function depending on d. Using (30), we obtain the following jump:
½CðdÞ� ¼ 3½KoðdÞ � Kf ðdÞ�Jþ 2½GoðdÞ � Gf ðdÞ�K ð32Þ

The jump ½CðdÞ� of the stiffness tensor must be singular and in fact of rank one to satisfy the condition (31)
(Curnier et al., 1995). This condition is fulfilled if all determinants of second order obtained from a voigt rep-
resentation of ½CðdÞ� are canceled, that is
8d; GoðdÞ ¼ Gf ðdÞ ð33Þ

The continuity of W is then obtained if the shear moduli does not depend on the microcracks state. It follows
for the shear moduli of the damaged material that G(d) = Go(d) = Gf(d).

It can be noted that no mathematical conditions are imposed on the compressibility moduli. According to
experimental observations on the progressive closure effects of microcracks (Sibai et al., 2003), we assume as
well that the compressibility modulus, when the microcracks are closed takes the initial value K0 of the sound
material. Therefore, the modulus restitution condition reads:
Kf ðdÞ ¼ K0 ð34Þ

and we will denote Ko(d) = K(d).

At this level of development, it remains to precise the expression of the function g which defines the micro-
cracks closure criterion. In view of (32) and (33), the tensor ½CðdÞ� is written in the form:
½CðdÞ� ¼ 3½KoðdÞ � Kf ðdÞ�J ¼ ½KoðdÞ � Kf ðdÞ�1� 1 ð35Þ
Comparing (31) and (35), it follows that the closure/opening criterion reads:
gðeÞ ¼ trðeÞ ¼ 0 ð36Þ
It must be emphasized that the simplicity of the microcrack opening–closure transition criterion is due to the
isotropy of the damage. In the case of a anisotropic damage, the methodology followed in this work would
lead to a more complex criterion which depends in particular on the microcracks orientation.

Finally, the thermodynamical potential takes the following form:
W ðe; dÞ ¼ 1

2
e : CðdÞ : e; CðdÞ ¼

3KðdÞJþ 2GðdÞK if trðeÞ > 0

3K0Jþ 2GðdÞK if trðeÞ 6 0

(
ð37Þ
In order to provide a physical basis to the damage model, we consider for K(d) and G(d) micromechanical
results established by Ponte-Castañeda and Willis (1995) for microcracked media. These results have the inter-
est of taking into account, not only the interactions between microcracks, but also their spatial distribution.
For this purpose, two tensors describing the microcracks shape and their ellipsoidal spatial distribution,
respectively, must be considered. For a randomly oriented penny-shaped microcracks with a spherical spatial
distribution, one gets (Ponte-Castañeda and Willis, 1995):
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KðdÞ ¼ K0 1� 48ð1� m2
0Þd

27ð1� 2m0Þ þ 16dð1þ m0Þ2

 !
ð38Þ

GðdÞ ¼ G0 1� 480ð1� m0Þð5� m0Þd
675ð2� m0Þ þ 64dð4� 5m0Þð5� m0Þ

	 

ð39Þ
where m0 is the Poisson ratio of the undamaged grains..
Now, following Marigo (1985), let us introduce the yield function f in a form which depends on the ther-

modynamical force Fd and on the damage variable d:
f ðF d ; dÞ ¼ F d � HðdÞ ð40Þ
H is a scalar strictly positive function:
HðdÞ ¼ H 0ð1þ gdÞ
with H 0 > 0 and g > 0

�
ð41Þ
Assuming the standard normality rule, one has:
_d ¼ _c of
oF d ðF d ; dÞ ¼ _c

_c ¼ 0 if f ðF d ; dÞ 6 0; _f ðF d ; dÞ < 0

_c > 0 if f ðF d ; dÞ ¼ 0; _f ðF d ; dÞ ¼ 0

8><
>: ð42Þ
in which the damage multiplier _c is given by the consistency condition. Reporting this evolution law in the rate
form of the stress tensor one gets the incremental formulation of the elastic damage law:
_r ¼ L : _e ð43Þ
with the tangent operator L given by the following expression:
L1 ¼
CðdÞ if f ðF d ; dÞ 6 0; _f ðF d ; dÞ < 0

CðdÞ �
oF d

oe
�oF d

oe
h if f ðF d ; dÞ ¼ 0; _f ðF d ; dÞ ¼ 0

8><
>: ð44Þ
in (44), tensor CðdÞ is given by (37) and h ¼ H 0g� oF d

od .
Combining (29) and (37) and in case of a damage evolution, we obtain the final expressions:
L1 ¼ 3k1Jþ 2k2K� 2k3ð1� eþ e� 1Þ � 2k4e� e ð45Þ
k2 = G(d), k4 ¼ 2ðG0ðdÞÞ2
h ,
k1 ¼ KðdÞ � ðK
0ðdÞ tr eÞ2

h

 !
and k3 ¼ KðdÞ � G0ðdÞK 0ðdÞ

h

	 

if trðeÞ > 0

k1 ¼ K0 and k3 ¼ 0 if trðeÞ 6 0

8><
>: ð46Þ
h = H0g + K00(d) tr e1 + G00(d) e where K00(d) and G00(d) are the second derivative of K(d) and G(d), respectively,
whereas K 0(d) and G 0(d) are the first derivative of K(d) and G(d), respectively.

5. Implementation and numerical validation of the model

5.1. Local integration of the micromechanical model

This integration is done for each integration point (or Gauss point) of the elements.
We still consider a three phases material whose r.v.e. is subjected to an uniform macroscopic strain

En+1 = En + DE at the step (n + 1). We adopt the resolution scheme described as follows.
Let us denote Dei

r
, the estimates of the strain increment average at the increment (i) for the phase r.
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(1) We initialize the average of the deformation increment to the macroscopic deformation:
2 In
meanin
De0

1
:¼ DE ð47Þ

De0

2
:¼ DE ð48Þ
(2) At the iteration i, the values of Dei
1

and Dei
2

are known, and we are able to determine the tangent moduli
Li

1 and Li
2 with the help of the local integration scheme in the phases 1 and 2.

(3) The average strain in the matrix is obtained by
Dei
0

:¼
DE � f1Dei

1
� f2Dei

2

1� f1 � f2

ð49Þ
(4) We can thus determine the tangent moduli Li
0 with the help of the local integration scheme of the phase 0.

(5) Hill tensor P0
I is evaluated by numerical integration.

(6) Calculation of the tensors Ti
1 and Ti

2:
Ti
1 :¼ Iþ P0

I : ðLi
1 � Li

0Þ
� ��1 ð50Þ

Ti
2 :¼ Iþ P0

I : ðLi
2 � Li

0Þ
� ��1 ð51Þ
(7) It is thus possible to determine the incremental localization tensor Ai
r for each phase with the expression

(9):
Ai
0 :¼ f0Iþ f1T

i
1 þ f2T

i
2

� ��1 ð52Þ
Ai

1 :¼ Ti
1 : Ai

0 ð53Þ
Ai

2 :¼ Ti
2 : Ai

0 ð54Þ
(8) We verify after that the compatibility of the average strains for the phases (1) and (2) and perform the
calculations of corresponding error R:
Ri
1 :¼ Ai

1 : DE � Dei
1

ð55Þ
Ri

2 :¼ Ai
2 : DE � Dei

2
ð56Þ
If kRi
1k < tolerance 1 and if kRi

2k < tolerance 2, then the solution is obtained. Else, we make a new iter-
ation with:
Deiþ1

1
:¼ Dei

1
þ Ri

1 ð57Þ
Deiþ1

2
:¼ Dei

2
þ Ri

2 ð58Þ
until the convergence is obtained.
(9) We determine, with the Mori–Tanaka scheme, the macroscopic tangent tensor:
Lhom :¼ ½f0L0 þ f1L1 : T1 þ f2L2 : T2� : A0 ð59Þ
DRnþ1 :¼ Lhom : DEnþ1 ð60Þ
5.2. Comparison with unit cell (finite element) calculation

In order to provide a first validation of the micromechanical approach, we present in this section some com-
parisons of its predictions with reference solutions obtained by Finite Element (FE) calculations. For this, we
consider the same assumptions on the local constituents in both homogenization and FE calculations.

The FE reference solution is obtained by considering an unit cell.2 As illustrated in Fig. 7, space is supposed
filled by prisms with hexagonal basis which represent the matrix, each prism being reinforced by a spherical
fact, this unit cell calculation corresponds rigorously to periodic composites. However, it is generally noted that the comparison is
gful for low or moderate volume fraction of particles.
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Fig. 7. A hexagonal periodic array of sphere-reinforced reduction to a 2D axisymmetric unit cell.
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inclusion in its center. In order to take advantage of symmetry, the 3D unit cells are approximated by cylinders
to allow axisymmetric computations. The boundary conditions are the following:

• U3(r,0) = 0, 0 < r < R

• U 3ðr; LÞ ¼ U 3, 0 < r < R

• U1(0,z) = 0, 0 < z < L

• U 1ðR; zÞ ¼ U 1, 0 < z < L

The displacement on the top side U 3 is prescribed gradually with time to reach the required strain at the end
of the simulation. The unit cell, used in the simulation, is with 15% of reinforcements and has 963 CAX8R
elements (8-node biquadratic axisymmetric quadrilaterals, with reduced integration) and contains 3002 nodes.

The chosen configuration corresponds to a two phase material, with spherical elastic inclusions embedded
in an elastoplastic matrix. In the numerical simulation, as already indicated, the model parameters used are the
same both in the micromechanical approach and in the FE calculations. Nevertheless, parameters are chosen
to obtain an homogenized behavior closed to the argillite one. The matrix behavior is described by the follow-
ing parameters: E0 = 3 GPa, m0 = 0.3, ap

0 ¼ 0:4, ap
m ¼ 0:9, b = 400, bp

0 ¼ 0:1, bp
m ¼ 0:8, b 0 = 400 and cp = 14.

The elastic inclusion is described with the following parameters: E1 = 100 GPa and m1 = 0.2.
In Fig. 8, we present for an uniaxial compression test, the comparison between the model prediction and the

periodic homogenization. Unfortunately, it appears that the predicted response is too stiff compared with the
FE solution. This observation is similar to the one that has been reported by Chaboche and Kanouté (2005)
and Doghri and Ouaar (2003) in the context of metals plasticity.
5.3. Isotropization procedure and validation

In the case of a Von Mises matrix, Doghri and Ouaar (2003) have shown that a way to improve the micro-
mechanical results consists in considering an isotropic version in which the Eshelby tensor is evaluated by
using an isotropic approximation of the tangent operator associated to the clay matrix (‘‘SE � Iso’’
procedure).

For this purpose, we consider the general method proposed by Bornert et al. (2001) and which is applicable
to any fourth order tensor:
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Liso
0 ¼ ðJ :: L0ÞJþ 1

5
ðK :: L0ÞK ð61Þ
Reporting expression (25) of L0 in (61), we obtain:
Liso
0 ¼ 3kT Jþ 2lT K ð62Þ

kT ¼ k 1� kapbp

h

	 

and lT ¼ l 1� 3l

5h

	 


with; h ¼ apbpk þ 3l� ðp � cpÞ
dap
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According to the assumption of isotropy and the fact that the grains are spherical, the Eshelby tensor is ana-
lytically evaluated and is expressed as
SE ¼ 3kT

3kT þ 4lT
Jþ 6

5

kT þ 2lT

3kT þ 4lT
K ð63Þ
At the step (5) of the algorithm described in Section 5.1, the Hill tensor is simply given by
P0
Ir
¼ SEðLiso

0 Þ : L�1
0 ; r ¼ 1; 2 ð64Þ
Other variants of the above procedure are possible: for example by using an isotropic extraction of the clay
matrix tangent operator to compute the Hill tensor P0

Ir
¼ SEðLiso

0 Þ : ðLiso
0 Þ
�1, one obtains a procedure called

here ‘‘P � Iso’’; it is also possible to compute entirely the macro tangent operator by considering the isotropic
operator Liso

0 . This is called here ‘‘All � Iso’’. It must be noted that the last procedure give non-physical results
because the macro tangent become symmetric, what it is not desirable for most geomaterials.

In the case of J2 plasticity theory, Pierard and Doghri (2006) have demonstrated that the two last versions
lead to too stiff predictions. For a Drucker–Prager matrix, the predictions of the different procedures and of
the basic anisotropic procedure (‘‘All � Ani’’) are compared in Fig. 9 to the FE calculations. It appears that
the first isotropization procedure (‘‘SE � Iso’’) provides results in agreement with the FE ones and will be then
adopted in the following.
Fig. 10. Comparison between the homogenized moduli and experimental ones.
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6. Calibration and experimental validations of the micromechanical model

The purpose of this last part of the study is to evaluate the predictive capabilities of the proposed model and
in particular its ability to reproduce the mechanical behavior of the argillite under various loading paths. It
Fig. 12. Parameters of the model.

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

-1.5-1-0.500.5

-40

-35

-30

-25

-20

-15

-10

-5

0

-1.5-1-0.500.5 (%)

33E
11EvE

vE

(%)

11E

-60

-50

-40

-30

-20

-10

0

-1.5-1.3-1.1-0.9-0.7-0.5-0.3-0.10.10.30.5

(%)

11 33- (MPa)Σ Σ

33E
vE

11E

-60

-50

-40

-30

-20

-10

0

-1.2-1-0.8-0.6-0.4-0.20
(%)

11 33- (MPa)Σ Σ

11E

11(MPa)Σ

       Experiment 
       Simulation 
       Matrix only 

       Experiment 
Simulation

       Experiment 
Simulation

       Experiment 
       Simulation 

Depth 466.8m,
0 51%=f ,

1 26%=f  and 
2 23%=f Depth 451.5m,

0 49%=f ,
1 19%=f  and 

2 32%=f

Depth 451.4m,
0 47%=f ,

1 31%=f  and 
2 22%=f Depth 451.4m,

0 47%=f ,
1 31%=f  and 

2 22%=f

33E

11 33- (MPa)Σ Σ

(a) (b)

(c) (d)

Fig. 13. Depth 1. Comparison between experiment and simulation: (a) Uniaxial compression test. (b) Triaxial compression test with
5 MPa confining pressure. (c) Triaxial compression test with 10 MPa confining pressure. (d) Loading and unloading in triaxial
compression test with 10 MPa confining pressure.
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must be first emphasized that in the following, only the version of the model based on the above isotropization
procedure is considered.

6.1. Identification of the model parameters

A preliminary step is the determination of the model parameters: 6 elastic coefficients, 7 parameters
involved in the plastic constituent of the materials, and 2 constants for the damage evolution in the calcite
grains.

The elastic parameters associated with the calcite and quartz constituents are chosen according to the lit-
erature (Lide, 2004): E1 = 95 GPa, m1 = 0.27, E2 = 101 GPa, and m2 = 0.06. Unfortunately, the elastic coeffi-
cients of the clay matrix are unknown. Since the macroscopic elastic constants of the calcite and quartz
phases are given and the ones of the argillite composite are known from experiments by Chiarelli et al.
(2003), we use the linear homogenization scheme (Mori–Tanaka) to identify the appropriate values of elastic
coefficients corresponding to the clay matrix. We obtain an average value of E0 = 3 GPa for the elastic mod-
ulus and of m0 = 0.3 for the Poisson ratio which are also in agreement with macroscopic modulus measured on
samples at different depths (e.g., mineral compositions) (Fig. 10).

The identification of the other parameters for the local plastic and elastic damage behaviors has been per-
formed by calibration on uniaxial compression test at the depth 466.8 m (Fig. 11). The retained values at the
end of this procedure are summarized in Fig. 12.
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6.2. Experimental validations

After the above calibration step, we propose to show the potentialities of the proposed model, keeping the
same identified parameters on all tests (uniaxial and triaxial compression tests with 5 and 10 MPa confinement
pressure, proportional compression tests, lateral extension tests). It is worth noticing that the considerations of
these tests at different depths (451.4–466.8; 468.9–469.1; and 482.2 m), e.g., different mineral compositions, will
provide a very complete evaluation of the model.
6.2.1. Triaxial compression tests

The comparisons of the macroscopic stress–strain curves and the experimental data are presented in
Figs. 13, 14, and 15 for triaxial compression tests. These comparisons indicate a good general agreement
between model’s predictions and experiments including cyclic response of the materials. They provide a
clear validation of the model for the study of the argillite. The simulations of unloading paths during
the triaxial tests (Figs. 13, 14, and 15d) allow also to show the capability of the model to reproduce the
deterioration of the macroscopic elastic properties of the material as observed in the experiments performed
by Chiarelli et al. (2003).

It is important to note that, without any supplementary calibration, the model is able to reproduce tests
corresponding to samples at different depths only by considering the appropriate (and measured) change in
the mineral composition of the material. Another interesting advantage of the micromechanical model over
purely phenomenological-based models is to provide predictions of the local fields at each macroscopic stress
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level. As an example, we report on (Fig. 16a) the damage evolution in the calcite grains as a function of the
macroscopic axial strain. The effect of this local damage on the elasticity of the calcite grains, as well as on the
macroscopic parameters are shown in Figs. 16b and c. It is worth noticing that the amplitude of the decrease
of the elastic moduli at local and macroscopic scales are strongly different. A possible consequence of the local
damage is that it can favor a strong increase of the overall permeability although the macroscopic mechanical
effect of damage is limited. This particular point still needs to be investigated in future works by following for
instance Shao et al. (2005) and Dormieux et al. (2005).

Concerning the triaxial tests, we also show in Fig. 17 the variation of the local axial plastic strain and of the
hardening function in the clay matrix.
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6.2.2. Proportional triaxial compression tests and lateral extension tests

In order to provide complementary validations of the model, we investigate now some other loading paths,
namely the proportional triaxial compression and the lateral extension test which are important in various
geomechanical applications. In a lateral extension test, the sample is first submitted to a hydrostatic stress
and then the confining pressure is reduced while the axial stress is kept at a constant value. In a proportional
test, the axial stress and confining pressure are simultaneously increased with a constant ratio k ¼ R11

R33
. Different

values of k (k = 5, k = 10) are considered. The results, shown in Fig. 19 for proportional tests and in Fig. 18
for lateral extension tests, demonstrate that the predictions of the model on this loading path are in agreement
with experimental stress–strain curves.

7. Conclusions

The coupled elastoplastic damage behavior of a cohesive frictional geomaterial, the Callovo-Oxfordian
argillite, is investigated by the means of a nonlinear homogenization approach. The formulation of the model
is carried out by means of a comprehensive analysis of the microstructure and the deformation mechanisms of
the studied class of materials. It was shown that the argillite can be described as a three phase medium whose
constituents are the clay matrix, the quartz grains, and the calcite grains. The clay matrix behaves as an elas-
toplastic material with possibility of a transition from plastic volumetric compressibility to dilatancy. In a first
approximation and for the range of loading considered, the quartz grains have been considered as linear elas-
tic. Observation of intragranular microcracks in calcite grains has motivated the modeling of these grains as
elastic damage ones.
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Based on the various experimental data and observations, we propose a specific model which takes the
advantage of the well known incremental Hill-type homogenization procedure, classically applied to plastic
behavior of heterogeneous metals. Our contribution is of three folds.

• An original formulation of the local behaviors of the argillites constituents. In particular, after a suitable
derivation of a non-associated dilatant plastic model dedicated to the clay matrix, we propose a new elastic
damage model which includes microcracks closure process (the so-called unilateral effects). This physically-
based and mathematically coherent approach of elastic damage combines micromechanical considerations
with the requirement of continuity of the mechanical response during the microcracks closure.

• An extension of the domain of applicability of the Hill-type incremental method of homogenization.
Clearly enough, a novel aspect of the study is the consideration of plastic compressibility combined with
an elastic damage behavior.
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k = 10 for three ranges of depths.



1428 A. Abou-Chakra Guéry et al. / International Journal of Solids and Structures 45 (2008) 1406–1429
• The proposed micromechanical formulation of the plastic-damage coupled behavior enables the simulation
of unloading and cyclic loadings. A large validation of the model is provided, by comparisons with Finite
Element calculations on unit cell and by comparison with experimental data on various loading paths.
More precisely, it is shown that, by considering a modified version of the original Hill method based on
the use of an isotropization procedure of the local tangent operator (see for instance Chaboche and Kan-
outé, 2005; Doghri and Ouaar, 2003 in the case of metals plasticity), the model predictions are in satisfac-
tory agreement with either the FE calculations and the experimental data. Moreover, the superiority of the
micromechanical model over his phenomenological competitors is underlined by showing some predictions
of local damage or local plastic deformations.

Among others, the ongoing developments mainly concern the extension of the model to the poroplastic
damage behavior of the argillite material when it is saturated by fluid under pressure as in Dormieux et al.
(2006) or in Shao et al. (2006).
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