26 research outputs found

    Discerning Secluded Sector gauge structures

    Full text link
    New fundamental particles, charged under new gauge groups and only weakly coupled to the standard sector, could exist at fairly low energy scales. In this article we study a selection of such models, where the secluded group either contains a softly broken U(1) or an unbroken SU(N). In the Abelian case new {\gamma}v gauge bosons can be radiated off and decay back into visible particles. In the non-Abelian case there will not only be a cascade in the hidden sector, but also hadronization into new {\pi}v and {\rho}v mesons that can decay back. This framework is developed to be applicable both for e+e- and pp collisions, but for these first studies we concentrate on the former process type. For each Abelian and non-Abelian group we study three different scenarios for the communication between the standard sector and the secluded one. We illustrate how to distinguish the various characteristics of the models and especially study to what extent the underlying gauge structure can be determined experimentally.Comment: removed extra figure

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Gene silencing by RNA interference in the ectoparasitic mite, Psoroptes ovis

    Get PDF
    Abstract The presence of components of the RNA interference (RNAi) pathway in Psoroptes ovis, an ectoparasitic mite responsible for psoroptic mange, was investigated through interrogation of the P. ovis genome. Homologues of transcripts representing critical elements for achieving effective RNAi in the mite, Tetranychus urticae and the model organisms Caenorhabditis elegans and Drosophila melanogaster were identified and, following the development of a non-invasive immersion method of double stranded RNA delivery, gene silencing by RNAi was successfully demonstrated in P. ovis. Significant reductions in transcript levels were achieved for three target genes which encode the Group 2 allergen (Pso o 2), mu-class glutathione S-transferase (PoGST-mu1) and beta-tubulin (Poβtub). This is the first demonstration of RNAi in P. ovis and provides a mechanism for mining transcriptomic and genomic datasets for novel control targets against this economically important ectoparasite
    corecore