407 research outputs found

    Critical and Liberative Theories: Applications in Engineering Education

    Get PDF
    Background. Higher educational programs in engineering today are seeking to correct disproportionately low enrollment and success rates of minoritized students. However, most diversity-related programming fails to address systems of structural oppression that cause particular students to be underrepresented in higher education. In addition, typical engineering pedagogical methods fail to address the reality and impacts of structural oppression, as educators cannot overcome the effects of structurally oppressive systems through traditional methods of controlling classroom and curriculum.Purpose. This paper explores the relationship between existing critical and liberative theories and engineering educational systems and re-frames the goals and problems of diversity and equity within engineering education from a critical and liberative lens.Methodology/Approach. We describe existing liberative pedagogies and their aim to dismantle oppressive systems through recognition of hegemonic structures, critical classroom discourse, and opportunities to build solidarity. We present an overview of previous uses of these pedagogies in engineering classrooms under the premise of Freirean critical theory, which is class-based, and other anti-oppressive theories based on race, gender, and sexual orientation. We propose a new model that situates these theories relative to one another within the broader classification of identity-based theories.Conclusions. Class-based exploitation under capitalist economic and governmental structures is identified as the root cause of inequitable educational outcomes. Thus, in order to correct inequities in education, the role of current educational systems in the perpetuation of capitalist oppression must itself be addressed. This will require pedagogical changes as well as explicitly restructuring the goals of engineering education to include equity and solidarity.Implications. Through an embrace of critical and liberative theories and their accompanying pedagogies, engineering educators and engineering education researchers can plant the seeds for change. When engineers develop the skills necessary to recognize and combat oppression, they will be able to work toward liberation for all oppressed peoples

    Insertion of T4-lysozyme (T4L) can be a useful tool for studying olfactory-related GPCRs.

    Get PDF
    The detergents used to solubilize GPCRs can make crystal growth the rate-limiting step in determining their structure. The Kobilka laboratory showed that insertion of T4-lysozyme (T4L) in the 3rd intracellular loop is a promising strategy towards increasing the solvent-exposed receptor area, and hence the number of possible lattice-forming contacts. The potential to use T4L with the olfactory-related receptors hOR17-4 and hVN1R1 was thus tested. The structure and function of native and T4L-variants were compared. Both receptors localized to the cell membrane, and could initiate ligand-activated signaling. Purified receptors not only had the predicted alpha-helical structures, but also bound their ligands canthoxal (MW = 178.23) and myrtenal (MW = 150.22). Interestingly, the T4L variants had higher percentages of soluble monomers compared to protein aggregates, effectively increasing the protein yield that could be used for structural and function studies. They also bound their ligands for longer times, suggesting higher receptor stability. Our results indicate that a T4L insertion may be a general method for obtaining GPCRs suitable for structural studies

    Investigating the role for IL-21 in rabies virus vaccine-induced immunity.

    Get PDF
    Over two-thirds of the world\u27s population lives in regions where rabies is endemic, resulting in over 15 million people receiving multi-dose post-exposure prophylaxis (PEP) and over 55,000 deaths per year globally. A major goal in rabies virus (RABV) research is to develop a single-dose PEP that would simplify vaccination protocols, reduce costs associated with RABV prevention, and save lives. Protection against RABV infections requires virus neutralizing antibodies; however, factors influencing the development of protective RABV-specific B cell responses remain to be elucidated. Here we used a mouse model of IL-21 receptor-deficiency (IL-21R-/-) to characterize the role for IL-21 in RABV vaccine-induced immunity. IL-21R-/- mice immunized with a low dose of a live recombinant RABV-based vaccine (rRABV) produced only low levels of primary or secondary anti-RABV antibody response while wild-type mice developed potent anti-RABV antibodies. Furthermore, IL-21R-/- mice immunized with low-dose rRABV were only minimally protected against pathogenic RABV challenge, while all wild-type mice survived challenge, indicating that IL-21R signaling is required for antibody production in response to low-dose RABV-based vaccination. IL-21R-/- mice immunized with a higher dose of vaccine produced suboptimal anti-RABV primary antibody responses, but showed potent secondary antibodies and protection similar to wild-type mice upon challenge with pathogenic RABV, indicating that IL-21 is dispensable for secondary antibody responses to live RABV-based vaccines when a primary response develops. Furthermore, we show that IL-21 is dispensable for the generation of Tfh cells and memory B cells in the draining lymph nodes of immunized mice but is required for the detection of optimal GC B cells or plasma cells in the lymph node or bone marrow, respectively, in a vaccine dose-dependent manner. Collectively, our preliminary data show that IL-21 is critical for the development of optimal vaccine-induced primary but not secondary antibody responses against RABV infections

    Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space

    Get PDF
    We present an analysis of 203 completed genomes in the Gene3D resource (including 17 eukaryotes), which demonstrates that the number of protein families is continually expanding over time and that singleton-sequences appear to be an intrinsic part of the genomes. A significant proportion of the proteomes can be assigned to fewer than 6000 well-characterized domain families with the remaining domain-like regions belonging to a much larger number of small uncharacterized families that are largely species specific. Our comprehensive domain annotation of 203 genomes enables us to provide more accurate estimates of the number of multi-domain proteins found in the three kingdoms of life than previous calculations. We find that 67% of eukaryotic sequences are multi-domain compared with 56% of sequences in prokaryotes. By measuring the domain coverage of genome sequences, we show that the structural genomics initiatives should aim to provide structures for less than a thousand structurally uncharacterized Pfam families to achieve reasonable structural annotation of the genomes. However, in large families, additional structures should be determined as these would reveal more about the evolution of the family and enable a greater understanding of how function evolves

    Methodological approach for measuring the effects of organisational-level interventions on employee withdrawal behaviour

    Get PDF
    Background: Theoretical frameworks have recommended organisational-level interventions to decrease employee withdrawal behaviours such as sickness absence and employee turnover. However, evaluation of such interventions has produced inconclusive results. The aim of this study was to investigate if mixed-effects models in combination with time series analysis, process evaluation, and reference group comparisons could be used for evaluating the effects of an organisational-level intervention on employee withdrawal behaviour. Methods: Monthly data on employee withdrawal behaviours (sickness absence, employee turnover, employment rate, and unpaid leave) were collected for 58 consecutive months (before and after the intervention) for intervention and reference groups. In total, eight intervention groups with a total of 1600 employees participated in the intervention. Process evaluation data were collected by process facilitators from the intervention team. Overall intervention effects were assessed using mixed-effects models with an AR (1) covariance structure for the repeated measurements and time as fixed effect. Intervention effects for each intervention group were assessed using time series analysis. Finally, results were compared descriptively with data from process evaluation and reference groups to disentangle the organisational-level intervention effects from other simultaneous effects. Results: All measures of employee withdrawal behaviour indicated statistically significant time trends and seasonal variability. Applying these methods to an organisational-level intervention resulted in an overall decrease in employee withdrawal behaviour. Meanwhile, the intervention effects varied greatly between intervention groups, highlighting the need to perform analyses at multiple levels to obtain a full understanding. Results also indicated that possible delayed intervention effects must be considered and that data from process evaluation and reference group comparisons were vital for disentangling the intervention effects from other simultaneous effects. Conclusions: When analysing the effects of an intervention, time trends, seasonal variability, and other changes in the work environment must be considered. The use of mixed-effects models in combination with time series analysis, process evaluation, and reference groups is a promising way to improve the evaluation of organisational-level interventions that can easily be adopted by others
    • …
    corecore