261 research outputs found
The freemasonry of the race : The cultural politics of ritual, race, and place in postemancipation Virginia
African American cultural and social history has neglected to interrogate fully a crucial facet of African American political, economic, and social life: African American Freemasonry. The Freemasonry of the Race : The Cultural Politics of Ritual, Race, and Place in Postemancipation Virginia seeks to remedy this neglect. This project broadly situates African American Freemasonry in the complex and evolving relations of power, peoples, and polities of the Atlantic world. The study develops an interpretative framework that not only recognizes the organizational and institutional aspects of African American Freemasonry, but also interprets it as a discursive space in and through which articulations of race, class, gender, and place are theorized and performed.; The Freemasonry of the Race presents a critical cartography of African American Freemasons\u27 responses to the social and political exigencies of the postemancipation period. The study connects the developments of African American Freemasonry in the Atlantic world with the every day culture of African American Freemasonry in Charlottesville, Virginia from the conclusion of the Civil War until the turn of the century. Utilizing African American Freemasonry as a critical optic, the major question this study attempts to respond to is: How can we historicize and (re)present African American Freemasonry in order to rethink the cultural and political space of the postemancipation period in the United States?;Borrowing and blending a number of methodologies from social history, literary theory, and cultural studies, The Freemasonry of the Race : The Cultural Politics of Ritual, Race, and Place in Postemancipation Virginia presents a set of analytic essays on African American Freemasonry, each intimately concerned with deciphering some of the principles that organized and (re)constructed various regimes of power and normality along the fault lines of race, sex, gender, class, and place. By thinking and working through African American Freemasonry in such a manner, this project seeks to open up new interdisciplinary horizons in African American cultural and social history
[Introduction to] Community Wealth Building and the Reconstruction of American Democracy: Can We Make American Democracy Work?
How can we create and sustain an America that never was, but should be? How can we build a truly multiracial democracy in which everyone is valued and possesses the needed political, economic and social capital so that democracy becomes a meaningful way of life, for all citizens? By critically probing these questions, the editors of Community Wealth Building and the Reconstruction of American Democracy seize the opportunity to bridge the gap between our democratic aspirations and our current reality. In a moment of democratic disappointment and anxiety, politicians, policy officials, scholars and citizens desire an effective response. This book assembles new voices and novel perspectives that offer a compelling vision for democracy and the prospects and possibilities afforded by community wealth building, an emerging policy paradigm focused on community-based, creative solutions to systemic problems. The contributors explore how, by cultivating the capacities of citizens, American democracy can be revived - indeed, created - as a veritable practice of everyday life. Scholars of democracy in political science, history, sociology, public policy, economics, African-American studies and related topics as well as policy practitioners, journalists and students will appreciate the cutting-edge work by leading scholars and the contributions from impactful practitioners from the White House to City Halls, in this discussion of the challenges facing contemporary American democracy and the prospects for reform and change.
Please download the Introduction from the link above. You may purchase this book directly from the publisher from the link below.https://scholarship.richmond.edu/bookshelf/1381/thumbnail.jp
WSClean : an implementation of a fast, generic wide-field imager for radio astronomy
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.Peer reviewedFinal Published versio
High-energy sources at low radio frequency : the Murchison Widefield Array view of Fermi blazars
This is the accepted version of the following article: Giroletti, M. et al., A&A, 588 (2016) A141, which has been published in final form at DOI: http://dx.doi.org/10.1051/0004-6361/201527817. This article may be used for non-commercial purposes in accordance with the EDP Sciences self-archiving policies.Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by \fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120--180 MHz) blazar spectral index is : blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population.Peer reviewedFinal Published versio
The first Murchison Widefield Array low frequency radio observations of cluster scale non-thermal emission : the case of Abell 3667
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been reported to contain a faint radio halo and bridge. The origins of radio halos, relics and bridges is still unclear, however galaxy cluster mergers seems to be an important factor. We clearly detect the North-West (NW) and South-East (SE) radio relics in A3667 and find an integrated flux density at 149 MHz of 28.1 +/- 1.7 and 2.4 +/- 0.1 Jy, respectively, with an average spectral index, between 120 and 1400 MHz, of -0.9 +/- 0.1 for both relics. We find evidence of a spatial variation in the spectral index across the NW relic steepening towards the centre of the cluster, which indicates an ageing electron population. These properties are consistent with higher frequency observations. We detect emission that could be associated with a radio halo and bridge. How- ever, due to the presence of poorly sampled large-scale Galactic emission and blended point sources we are unable to verify the exact nature of these features.Peer reviewe
Ionospheric modelling using GPS to calibrate the MWA. 1 : Comparison of first order ionospheric effects between GPS models and MWA observations
This document is the Accepted Manuscript version of the following article: B. S. Arora, et al, ‘Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations’, Publications of the Astronomical Society of Australia, Vol. 32, e029, August 2015. The final, published version is available online at doi: https://doi.org/10.1017/pasa.2015.29. COPYRIGHT: © Astronomical Society of Australia 2015.We compare first order (refractive) ionospheric effects seen by the Murchison Widefield Array (MWA) with the ionosphere as inferred from Global Positioning System (GPS) data. The first order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the Center for Orbit Determination in Europe (CODE), using data from globally distributed GPS receivers. However, for the more accurate local ionosphere estimates required for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver Differential Code Biases (DCBs). The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling, a requirement for establishing dense GPS networks in arbitrary locations in the vicinity of the MWA. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 minutes. Also the receiver DCBs are estimated for selected Geoscience Australia (GA) GPS receivers, located at Murchison Radio Observatory (MRO1), Yarragadee (YAR3), Mount Magnet (MTMA) and Wiluna (WILU). The ionospheric gradients estimated from GPS are compared with the ionospheric gradients inferred from radio source position shifts observed with the MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.Peer reviewe
The Murchison Widefield Array Commissioning Survey : A Low-Frequency Catalogue of 14,110 Compact Radio Sources over 6,100 Square Degrees
22 pages, 18 figures, accepted to PASAWe present the results of an approximately 6,100 square degree 104--196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the Murchison Widefield Array Commissioning Survey (MWACS). The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 hPeer reviewedFinal Accepted Versio
GLEAM : The GaLactic and Extragalactic All-sky MWA survey
© Astronomical Society of Australia 2015; published by Cambridge University Press. This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/GLEAM, the GaLactic and Extragalactic All-sky MWA survey, is a survey of the entire radio sky south of declination +25 deg at frequencies between 72 and 231 MHz, made with the Murchison Widefield Array (MWA) using a drift scan method that makes efficient use of the MWA's very large field-of-view. We present the observation details, imaging strategies and theoretical sensitivity for GLEAM. The survey ran for two years, the first year using 40 kHz frequency resolution and 0.5 s time resolution; the second year using 10 kHz frequency resolution and 2 s time resolution. The resulting image resolution and sensitivity depends on observing frequency, sky pointing and image weighting scheme. At 154 MHz the image resolution is approximately 2.5 x 2.2/cos(DEC+26.7) arcmin with sensitivity to structures up to ~10 deg in angular size. We provide tables to calculate the expected thermal noise for GLEAM mosaics depending on pointing and frequency and discuss limitations to achieving theoretical noise in Stokes I images. We discuss challenges, and their solutions, that arise for GLEAM including ionospheric effects on source positions and linearly polarised emission, and the instrumental polarisation effects inherent to the MWA's primary beam.Peer reviewedFinal Published versio
Low frequency observations of linearly polarized structures in the interstellar medium near the south Galactic pole
This is an author-created, un-copyedited version of an article published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.3847/0004-637X/830/1/38We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54' resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4' resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.Peer reviewedFinal Accepted Versio
An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.We have carried out multiwavelength observations of the near-by () rich, merging galaxy cluster Abell 3376 with the Murchison Widefield Array (MWA). As a part of the GaLactic and Extragalactic All-sky MWA survey (GLEAM), this cluster was observed at 88, 118, 154, 188 and 215 MHz. The known radio relics, towards the eastern and western peripheries of the cluster, were detected at all the frequencies. The relics, with a linear extent of 1 Mpc each, are separated by 2 Mpc. Combining the current observations with those in the literature, we have obtained the spectra of these relics over the frequency range 80 -- 1400 MHz. The spectra follow power laws, with = and for the west and east relics, respectively (). Assuming the break frequency to be near the lower end of the spectrum we estimate the age of the relics to be 0.4 Gyr. No diffuse radio emission from the central regions of the cluster (halo) was detected. The upper limit on the radio power of any possible halo that might be present in the cluster is a factor of 35 lower than that expected from the radio power and X-ray luminosity correlation for cluster halos. From this we conclude that the cluster halo is very extended ( 500 kpc) and/or most of the radio emission from the halo has decayed. The current limit on the halo radio power is a factor of ten lower than the existing upper limits with possible implications for models of halo formation.Peer reviewe
- …
