3 research outputs found

    Conotoxin κM-RIIIJ, a tool targeting asymmetric heteromeric Kv1 channels

    No full text
    The vast complexity of native heteromeric K+ channels is largely unexplored. Defining the composition and subunit arrangement of individual subunits in native heteromeric K+ channels and establishing their physiological roles is experimentally challenging. Here we systematically explored this zone of ignorance in molecular neuroscience. Venom components, such as peptide toxins, appear to have evolved to modulate physiologically relevant targets by discriminating among closely related native ion channel complexes. We provide proof-of-principle for this assertion by demonstrating that κM-conotoxin RIIIJ (κM-RIIIJ) from Conus radiatus precisely targets asymmetric Kv channels composed of three Kv1.2 subunits and one Kv1.1 or Kv1.6 subunit with 100-fold higher apparent affinity compared with homomeric Kv1.2 channels. Our study shows that dorsal root ganglion (DRG) neurons contain at least two major functional Kv1.2 channel complexes: a heteromer, for which κM-RIIIJ has high affinity, and a putative Kv1.2 homomer, toward which κM-RIIIJ is less potent. This conclusion was reached by (i) covalent linkage of members of the mammalian Shaker-related Kv1 family to Kv1.2 and systematic assessment of the potency of κM-RIIIJ block of heteromeric K+ channel-mediated currents in heterologous expression systems; (ii) molecular dynamics simulations of asymmetric Kv1 channels providing insights into the molecular basis of κM-RIIIJ selectivity and potency toward its targets; and (iii) evaluation of calcium responses of a defined population of DRG neurons to κM-RIIIJ. Our study demonstrates that bioactive molecules present in venoms provide essential pharmacological tools that systematically target specific heteromeric Kv channel complexes that operate in native tissues

    Spatial genetic structure in Milicia excelsa (Moraceae) indicates extensive gene dispersal in a low-density wind-pollinated tropical tree

    No full text
    In this study, we analysed spatial genetic structure (SGS) patterns and estimated dispersal distances in Milicia excelsa (Welw.) C.C. Berg (Moraceae), a threatened wind-pollinated dioecious African tree, with typically low density (similar to 10 adults/km2). Eight microsatellite markers were used to type 287 individuals in four Cameroonian populations characterized by different habitats and tree densities. Differentiation among populations was very low. Two populations in more open habitat did not display any correlation between genetic relatedness and spatial distance between individuals, whereas significant SGS was detected in two populations situated under continuous forest cover. SGS was weak with a maximum S-p-statistic of 0.006, a value in the lower quartile of SGS estimates for trees in the literature. Using a stepwise approach with Bayesian clustering methods, we demonstrated that SGS resulted from isolation by distance and not colonization by different gene pools. Indirect estimates of gene dispersal distances ranged from sigma(g)SCOPUS: ar.jFLWINinfo:eu-repo/semantics/publishe
    corecore