26 research outputs found

    Physicochemical Properties of Lipoproteins Assessed by Nuclear Magnetic Resonance as a Predictor of Premature Cardiovascular Disease. PRESARV-SEA Study

    Get PDF
    Some lipoprotein disorders related to the residual risk of premature cardiovascular disease (PCVD) are not detected by the conventional lipid profile. In this case-control study, the predictive power of PCVD of serum sdLDL-C, measured using a lipoprotein precipitation method, and of the physicochemical properties of serum lipoproteins, analyzed by nuclear magnetic resonance (NMR) techniques, were evaluated. We studied a group of patients with a first PCVD event (n = 125) and a group of control subjects (n = 190). Conventional lipid profile, the size and number of Very Low Density Lipoproteins (VLDL), Low Density Lipoproteins (LDL), High Density Lipoproteins (HDL) particles, and the number of particles of their subclasses (large, medium, and small) were measured. Compared to controls, PCVD patients had lower concentrations of all LDL particles, and smaller and larger diameter of LDL and HDL particles, respectively. PCVD patients also showed higher concentrations of small dense LDL-cholesterol (sdLDL), and triglycerides (Tg) in LDL and HDL particles (HDL-Tg), and higher concentrations of large VLDL particles. Multivariate logistic regression showed that sdLDL-C, HDL-Tg, and large concentrations of LDL particles were the most powerful predictors of PCVD. A strong relationship was observed between increased HDL-Tg concentrations and PCVD. This study demonstrates that beyond the conventional lipid profile, PCVD patients have other atherogenic lipoprotein alterations that are detected by magnetic resonance imaging (MRI) analysis

    Characterization of Italian honeys (Marche Region) on the basis of their mineral content and some typical quality parameters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The characterization of three types of Marche (Italy) honeys (Acacia, Multifloral, Honeydew) was carried out on the basis of the their quality parameters (pH, sugar content, humidity) and mineral content (Na, K, Ca, Mg, Cu, Fe, and Mn). Pattern recognition methods such as principal components analysis (PCA) and linear discriminant analysis (LDA) were performed in order to classify honey samples whose botanical origins were different, and identify the most discriminant parameters. Lastly, using ANOVA and correlations for all parameters, significant differences between diverse types of honey were examined.</p> <p>Results</p> <p>Most of the samples' water content showed good maturity (98%) whilst pH values were in the range 3.50 – 4.21 confirming the good quality of the honeys analysed. Potassium was quantitatively the most relevant mineral (mean = 643 ppm), accounting for 79% of the total mineral content. The Ca, Na and Mg contents account for 14, 3 and 3% of the total mineral content respectively, while other minerals (Cu, Mn, Fe) were present at very low levels. PCA explained 75% or more of the variance with the first two PC variables. The variables with higher discrimination power according to the multivariate statistical procedure were Mg and pH. On the other hand, all samples of acacia and honeydew, and more than 90% of samples of multifloral type have been correctly classified using the LDA. ANOVA shows significant differences between diverse floral origins for all variables except sugar, moisture and Fe.</p> <p>Conclusion</p> <p>In general, the analytical results obtained for the Marche honeys indicate the products' high quality. The determination of physicochemical parameters and mineral content in combination with modern statistical techniques can be a useful tool for honey classification.</p

    Proyecto, investigación e innovación en urbanismo, arquitectura y diseño industrial

    Get PDF
    Actas de congresoLas VII Jornadas de Investigación “Encuentro y Reflexión” y I Jornadas de Investigación de becarios y doctorandos. Proyecto, investigación e innovación en Urbanismo, Arquitectura y Diseño Industrial se centraron en cuatro ejes: el proyecto; la dimensión tecnológica y la gestión; la dimensión social y cultural y la enseñanza en Arquitectura, Urbanismo y Diseño Industrial, sustentados en las líneas prioritarias de investigación definidas epistemológicamente en el Consejo Asesor de Ciencia y Tecnología de esta Universidad Nacional de Córdoba. Con el objetivo de afianzar continuidad, formación y transferencia de métodos, metodología y recursos se incorporó becarios y doctorandos de los Institutos de investigación. La Comisión Honoraria la integraron las tres Secretarias de Investigación de la Facultad, arquitectas Marta Polo, quien fundó y María del Carmen Franchello y Nora Gutiérrez Crespo quienes continuaron la tradición de la buena práctica del debate en la cotidianeidad de la propia Facultad. Los textos que conforman las VII Jornadas son los avances y resultados de las investigaciones realizadas en el bienio 2016-2018.Fil: Novello, María Alejandra. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Repiso, Luciana. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Mir, Guillermo. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Brizuela, Natalia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Herrera, Fernanda. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Períes, Lucas. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Romo, Claudia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Gordillo, Natalia. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; ArgentinaFil: Andrade, Elena Beatriz. Universidad Nacional de Córdoba. Facultad de Arquitectura, Urbanismo y Diseño; Argentin

    Developmen of Cu-based oxygen carriers for chemical-looping combustion

    Get PDF
    In a chemical-looping combustion (CLC) process, gas (natural gas, syngas, etc) is burnt in two reactors. In the first one, a metallic oxide that is used as oxygen source is reduced by the feeding gas to a lower oxidation state, being CO2 and steam the reaction products. In the second reactor, the reduced solid is regenerated with air to the fresh oxide, and the process can be repeated for many successive cycles. CO2 can be easily recovered from the outlet gas coming from the first reactor by simple steam condensation. Consequently, CLC is a clean process for the combustion of carbon containing fuels preventing the CO2 emissions to atmosphere. The main drawback of the overall process is that the carriers are subjected to strong chemical and thermal stresses in every cycle and the performance and mechanical strength can decay down to unacceptable levels after enough number of cycles in use. In this paper the behaviour of CuO as an oxygen carrier for a CLC process has been analysed in a thermogravimetric analyser (TGA). The effects of carrier composition and preparation method used have been investigated to develop Cu-based carriers exhibiting high reduction and oxidation rates without substantial changes in the chemical, structural and mechanical properties for a high number of oxidation-reduction cycles. It has been observed that the carriers prepared by mechanical mixing or by coprecipitation showed an excellent chemical stability in multicycle tests in thermobalance, however, the mechanical properties of these carriers were highly degraded to unacceptable levels. On the other hand, the carriers prepared by impregnation exhibited excellent chemical stability without substantial decay of the mechanical strength in multicycle testing. These results suggest that copper based carriers prepared by impregnation are good candidates for chemical-looping combustion process.This work was partially supported by the European Commission, under the RFCS program (ECLAIR Project, Contract RFCP-CT-2008-0008), ALSTOM Power Boilers (France) and by the Spanish Ministry of Science and Innovation (PN, ENE2010-19550). I. Adánez-Rubio thanks CSIC for the JAE fellowship co-fund by the Eurpean Social Fund.Peer reviewe

    Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane

    No full text
    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two-stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 °C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent of the nickel loading. However, in the reduction stage, carbon deposition, from the thermal decomposition of methane, and CO emissions, mainly derived from the partial reduction of titania as support acting as an additional oxygen source, may impose some constraints to the efficiency of the overall chemical-looping combustion process in CO 2 capture. © 2005 American Chemical Society.This research was carried out with financial support from the European Coal and Steel Community (Project 7220-PR125) and the CICYT (Project CTQ2004-025565/PPQ).Peer Reviewe

    Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane in multicycle tests

    No full text
    11 pages, 11 figures, 1 table.Chemical-looping combustion has been proposed as an alternative process for the complete elimination of CO2 emissions to the atmosphere in the combustion of carbonaceous products, such as natural gas. In this case, the combustion is a two-stage process. In the first stage, the structural oxygen contained in a reducible inorganic oxide is used for the combustion of the natural gas. In the second stage, the reduced oxygen carrier is regenerated with pure air to reinitiate a new combustion cycle. In this paper, nickel oxide supported on porous rutile is used as an oxygen carrier for the chemical-looping combustion of methane, as the main component of natural gas. The performance is assessed in 20-cycle tests in a fixed-bed reactor at 900°C, using either dilute (20 vol% in N2) or pure methane for the reduction stage and pure air for the regeneration stage. The experimental results reveal that the reactions in the two involved processes are fast, as CO2, before breakthrough, is the only compound detected in the outlet gas of the reduction stage. However, in the reduction stage, the thermal decomposition of methane appears as a side reaction, already acting at the start of the test in clear competition for methane consumption with the main reaction of the chemical-looping combustion. In this case, carbon is mostly deposited as uniform coatings on Ni catalyst particles. Because this deposited carbon will evolve then as CO2 in the outlet gas of the next regeneration stage, its presence poses some limitations to the achievable maximum efficiency in CO2 capture in a chemical-looping process. Moreover, rutile does not behave as a completely inactive support, especially using pure methane. Conversely, through its partial reduction, it acts as an additional oxygen source for methane combustion that must be taken into account. A slight performance decay and significant porosity increase of the oxygen carriers with the number of cycles were observed in a 20-cycle test in a fixed-bed reactor, which should be assessed in further long-term tests in future work. © 2006 American Chemical Society.This research was carried out with financial support from the European Coal and Steel Community (Project 7220-PR125) and CICYT Project CTQ2004-025565/PPQ.Peer Reviewe

    Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane

    No full text
    7 pages, 8 figures, 2 tablesChemical-looping combustion of carbonaceous compounds is a proposed two-step process for complete CO2 capture and substantial reduction of NOx emissions. In the first stage, the reduction stage, the framework oxygen of a reducible inorganic oxide is used for the combustion of the carbonaceous material. In the second stage, the regeneration stage, the carrier in a reduced state is regenerated with air to recover the properties of the fresh carrier, ready to reinitiate a new cycle. This article provides results for the performance of a copper oxide silica-supported oxygen carrier in a 20-cycle test of chemical-looping of methane in a fixed-bed reactor at 800 °C and atmospheric pressure. The mesoporous nature of silica provided a good dispersion of the active phase imparting a high mechanical strength to the overall carrier. Additionally, silica is stable under highly reducing agents and inert in the two involved processes. The respective CH4, CO2, and CO breakthrough curves in the reduction stage show that the reduction reaction rate is fast and highly selective to CO2 formation. CO emissions are very low, only yielded at the end of the reduction stage, when the reduction stage should be stopped to initiate a regeneration stage. Characterization studies using different techniques, such as TPR, SEMEDX, and powder XRD, reveal that CuO might decompose into Cu2O at the operating conditions used in the reduction stage, but fortunately, the decomposition rate is so low that it has no effect on the oxygen amount initially available for chemical-looping combustion. Copper does not promote the thermal decomposition of methane, and deposited carbon, consequently, could not be detected in the reduced carrier. In a 20-cycle test neither performance decay nor mechanical degradation of the oxygen carrier has been observed.This research was carried out with financial support from the European Coal and Steel Community (Project 7220-PR125) and CICYT Project CTQ2004-025565/PPQ.Peer Reviewe

    The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemicel looping combustion of methane

    No full text
    Chemical looping combustion (CLC) of methane has been proposed in the past decade as an efficient method for CO2 capture without important cost penalties. The combustion is carried out in a two-step process using, in the first one, the lattice oxygen of a reducible inorganic oxide for methane combustion and, in the second one, air for further carrier regeneration. An additional advantage of the CLC is the improbable generation of thermal NOx because the operating temperature used for carrier regeneration is relatively low. Copper-based oxygen carriers with different copper contents have been prepared by successive wet impregnations on porous titania, used as support, with an aqueous solution of copper nitrate. The prepared oxygen carriers have been subsequently studied in five-cycle reduction-regeneration tests in a fixed bed reactor at atmospheric pressure with the aim of carrier characterization, analysis of the components in the outlet gas, and the study of the effect of some of the main parameters influencing the problem, including copper content and operating temperature. A further 20-cycle performance test has also been carried out with the oxygen carrier with the highest copper loading. The study reveals that copper does not interact with titania as support, which remains unaltered as rutile along all the two steps involved in the process. However, it is redistributed on the support because the melting points of some of the involved copper phases are close to the operating temperature. Neither carbonaceous deposits on the carrier in the reduction step nor subsidiary chemical reactions, especially those involving CO formation, takes place. The copper-based oxygen carriers exhibited a good performance in 20-cycle tests in a fixed bed reactor showing high reactivity and no substantial decay in efficiency with the number of cycle.This paper has been made on the frame of the GRACE (Grangemouth Advanced CO2 Capture) Project, coordinated by BP, and funded by the EU (ENK5-CT-2001-00571) and by the CCP (CO2 Capture Project), a partnership of BP, ChevronTexaco, EnCana, Eni. Norsk Hydro, Shell, Suncor, and Statoil.Peer Reviewe

    Physicochemical properties of lipoproteins assessed by nuclear magnetic resonance as a predictor of premature cardiovascular disease. Presarv-sea study

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER).Some lipoprotein disorders related to the residual risk of premature cardiovascular disease (PCVD) are not detected by the conventional lipid profile. In this case-control study, the predictive power of PCVD of serum sdLDL-C, measured using a lipoprotein precipitation method, and of the physicochemical properties of serum lipoproteins, analyzed by nuclear magnetic resonance (NMR) techniques, were evaluated. We studied a group of patients with a first PCVD event (n = 125) and a group of control subjects (n = 190). Conventional lipid profile, the size and number of Very Low Density Lipoproteins (VLDL), Low Density Lipoproteins (LDL), High Density Lipopro-teins (HDL) particles, and the number of particles of their subclasses (large, medium, and small) were measured. Compared to controls, PCVD patients had lower concentrations of all LDL parti-cles, and smaller and larger diameter of LDL and HDL particles, respectively. PCVD patients also showed higher concentrations of small dense LDL-cholesterol (sdLDL), and triglycerides (Tg) in LDL and HDL particles (HDL-Tg), and higher concentrations of large VLDL particles. Multivariate logistic regression showed that sdLDL-C, HDL-Tg, and large concentrations of LDL particles were the most powerful predictors of PCVD. A strong relationship was observed between increased HDL-Tg concentrations and PCVD. This study demonstrates that beyond the conventional lipid profile, PCVD patients have other atherogenic lipoprotein alterations that are detected by magnetic resonance imaging (MRI) analysis
    corecore