89 research outputs found
Syllabic quantity patterns as rhythmic features for Latin authorship attribution
It is well known that, within the Latin production of written text, peculiar metric schemes were followed not only in poetic compositions, but also in many prose works. Such metric patterns were based on so-called syllabic quantity, that is, on the length of the involved syllables, and there is substantial evidence suggesting that certain authors had a preference for certain metric patterns over others. In this research we investigate the possibility to employ syllabic quantity as a base for deriving rhythmic features for the task of computational authorship attribution of Latin prose texts. We test the impact of these features on the authorship attribution task when combined with other topic-agnostic features. Our experiments, carried out on three different datasets using support vector machines (SVMs) show that rhythmic features based on syllabic quantity are beneficial in discriminating among Latin prose authors
Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests
Extreme Rainfall Events Alter the Trophic Structure in Bromeliad Tanks Across the Neotropics
Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics
Ecological Response to Altered Rainfall Differs Across the Neotropics
There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of droughtâtolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of âsafe ecosystem functioningâ when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition
Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities
Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic lifeâhistory traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fineâgrained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales
Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads
The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits
Species niches, not traits, determine abundance and occupancy patterns: A multiâsite synthesis
International audienceAim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period 1993â2014. Major taxa studied Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test traitâniche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life
Death and the Societies of Late Antiquity
Ce volume bilingue, comprenant un ensemble de 28 contributions disponibles en français et en anglais (dans leur version longue ou abrĂ©gĂ©e), propose dâĂ©tablir un Ă©tat des lieux des rĂ©flexions, recherches et Ă©tudes conduites sur le fait funĂ©raire Ă lâĂ©poque tardo-antique au sein des provinces de lâEmpire romain et sur leurs rĂ©gions limitrophes, afin dâouvrir de nouvelles perspectives sur ses Ă©volutions possibles. Au cours des trois derniĂšres dĂ©cennies, les transformations considĂ©rables des mĂ©thodologies dĂ©ployĂ©es sur le terrain et en laboratoire ont permis un renouveau des questionnements sur les populations et les pratiques funĂ©raires de lâAntiquitĂ© tardive, pĂ©riode marquĂ©e par de multiples changements politiques, sociaux, dĂ©mographiques et culturels. Lâapparition de ce qui a Ă©tĂ© initialement dĂ©signĂ© comme une « Anthropologie de terrain », qui fut le dĂ©but de la dĂ©marche archĂ©othanatologique, puis le rĂ©cent dĂ©veloppement dâapproches collaboratives entre des domaines scientifiques divers (archĂ©othanatologie, biochimie et gĂ©ochimie, gĂ©nĂ©tique, histoire, Ă©pigraphie par exemple) ont Ă©tĂ© dĂ©cisives pour le renouvellement des problĂ©matiques dâĂ©tude : rĂ©vision dâanciens concepts comme apparition dâaxes dâanalyse inĂ©dits. Les recherches rassemblĂ©es dans cet ouvrage sont articulĂ©es autour de quatre grands thĂšmes : lâĂ©volution des pratiques funĂ©raires dans le temps, lâidentitĂ© sociale dans la mort, les ensembles funĂ©raires en transformation (organisation et topographie) et les territoires de lâempire (du cĆur aux marges). Ces Ă©tudes proposent un rĂ©examen et une rĂ©vision des donnĂ©es, tant anthropologiques quâarchĂ©ologiques ou historiques sur lâAntiquitĂ© tardive, et rĂ©vĂšlent, Ă cet Ă©gard, une mosaĂŻque de paysages politiques, sociaux et culturels singuliĂšrement riches et complexes. Elles accroissent nos connaissances sur le traitement des dĂ©funts, lâemplacement des aires funĂ©raires ou encore la structure des sĂ©pultures, en rĂ©vĂ©lant une diversitĂ© de pratiques, et permettent au final de relancer la rĂ©flexion sur la maniĂšre dont les sociĂ©tĂ©s tardo-antiques envisagent la mort et sur les Ă©lĂ©ments permettant dâidentifier et de dĂ©finir la diversitĂ© des groupes qui les composent. Elles dĂ©montrent ce faisant que nous pouvons vĂ©ritablement apprĂ©hender les structures culturelles et sociales des communautĂ©s anciennes et leurs potentielles transformations, Ă partir de lâĂ©tude des pratiques funĂ©raires.This bilingual volume proposes to draw up an assessment of the recent research conducted on funerary behavior during Late Antiquity in the provinces of the Roman Empire and on their borders, in order to open new perspectives on its possible developments. The considerable transformations of the methodologies have raised the need for a renewal of the questions on the funerary practices during Late Antiquity, a period marked by multiple political, social, demographic and cultural changes. The emergence field anthropology, which was the beginning of archaeothanatology, and then the recent development of collaborative approaches between various scientific fields (archaeothanatology, biochemistry and geochemistry, genetics, history, epigraphy, for example), have been decisive. The research collected in this book is structured around four main themes: Evolution of funerary practices over time; Social identity through death; Changing burial grounds (organisation and topography); Territories of the Empire (from the heart to the margins). These studies propose a review and a revision of the data, both anthropological and archaeological or historical on Late Antiquity, and reveal a mosaic of political, social, and cultural landscapes singularly rich and complex. In doing so, they demonstrate that we can truly understand the cultural and social structures of ancient communities and their potential transformations, based on the study of funerary practices
- âŠ