168 research outputs found

    The Importance of Early Number Concepts for Learning Mathematics in Deaf and Hard of Hearing Children

    Get PDF
    This chapter discusses important background knowledge and research findings from a variety of disciplines that inform best practices for supporting optimal mathematical achievement in all children. First, discussion will begin with the importance of early numeracy for later academic outcomes, and why prioritization of instruction time and early intervention are needed to increase the likelihood of a strong foundation in numeracy. Second, a brief overview of numeracy development milestones will provide a basis for discussion of our central thesis: language experiences can impact numerical cognition, which then have a significant impact on academic outcomes. Third, given the importance of numeracy skills in academic outcomes, we describe pedagogical trends that are likely to support the development of numerical cognition. This discussion will justify language remediation, increased mathematics talk, and visual-spatial representation as key goals for early intervention programs. Finally, we offer some future directions of research that will further account for underlying mechanisms of numeracy development in very young and preschool-aged children

    Visible Social Interactions Do Not Support the Development of False Belief Understanding in the Absence of Linguistic Input: Evidence from Deaf Adult Homesigners

    Get PDF
    Congenitally deaf individuals exhibit enhanced visuospatial abilities relative to normally hearing individuals. An early example is the increased sensitivity of deaf signers to stimuli in the visual periphery (Neville and Lawson, 1987a). While these enhancements are robust and extend across a number of visual and spatial skills, they seem not to extend to other domains which could potentially build on these enhancements. For example, congenitally deaf children, in the absence of adequate language exposure and acquisition, do not develop typical social cognition skills as measured by traditional Theory of Mind tasks. These delays/deficits occur despite their presumed lifetime use of visuo-perceptual abilities to infer the intentions and behaviors of others (e.g., Pyers and Senghas, 2009; O’Reilly et al., 2014). In a series of studies, we explore the limits on the plasticity of visually based socio-cognitive abilities, from perspective taking to Theory of Mind/False Belief, in rarely studied individuals: deaf adults who have not acquired a conventional language (Homesigners). We compared Homesigners’ performance to that of two other understudied groups in the same culture: Deaf signers of an emerging language (Cohort 1 of Nicaraguan Sign Language), and hearing speakers of Spanish with minimal schooling. We found that homesigners performed equivalently to both comparison groups with respect to several visual socio-cognitive abilities: Perspective Taking (Levels 1 and 2), adapted from Masangkay et al. (1974), and the False Photograph task, adapted from Leslie and Thaiss (1992). However, a lifetime of visuo-perceptual experiences (observing the behavior and interactions of others) did not support success on False Belief tasks, even when linguistic demands were minimized. Participants in the comparison groups outperformed the Homesigners, but did not universally pass the False Belief tasks. Our results suggest that while some of the social development achievements of young typically developing children may be dissociable from their linguistic experiences, language and/or educational experiences clearly scaffolds the transition into False Belief understanding. The lack of experience using a shared language cannot be overcome, even with the benefit of many years of observing others’ behaviors and the potential neural reorganization and visuospatial enhancements resulting from deafness

    WHO chased the bird? Narrative cohesion in Nicaraguan signing

    Get PDF
    WHO chased the bird? Narrative cohesion in Nicaraguan signin

    EMSO ERIC: A challenging infrastructure to monitor Essential Ocean Variables (EOVs) across European Seas

    Get PDF
    The European Multidisciplinary Seafoor and water Column Observatory (EMSO, www.emso.eu) is a distributed research infrastructure (RI), composed of fxed-point deep-sea observatories and shallow water test sites at strategic environmental locations from the southern entrance of the Arctic Ocean all the way through the North Atlantic through the Mediterranean to the Black Sea. Working as a single powerful system, it is a valuable new tool for researchers and engineers looking for long time series of high-quality and high-resolution data to study and continuously monitor complex processes interactions among the geosphere, biosphere, hydrosphere and atmosphere, as well as to test, validate and demonstrate new marine technologies.Peer Reviewe

    Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea

    Get PDF
    The Mediterranean Sea is a hotspot for climate change, and recent studies have reported its intense warming and salinification. In this study, we use an outstanding dataset relying mostly on glider endurance lines but also on other platforms to track these trends in the northwestern Mediterranean where deep convection occurs. Thanks to a high spatial coverage and a high temporal resolution over the period 2007–2017, we observed the warming (+0.06 ∘C year−1) and salinification (+0.012 year−1) of Levantine Intermediate Water (LIW) in the Ligurian Sea. These rates are similar to those reported closer to its formation area in the Eastern Mediterranean Sea. Further downstream, in the Gulf of Lion, the intermediate heat and salt content were exported to the deep layers from 2009 to 2013 thanks to deep convection processes. In 2014, a LIW step of +0.3 ∘C and +0.08 in salinity could be observed concomitant with a weak winter convection. Warmer and more saline LIW subsequently accumulated in the northwestern basin in the absence of intense deep convective winters until 2018. Deep stratification below the LIW thus increased, which, together with the air–sea heat fluxes intensity, constrained the depth of convection. A key prognostic indicator of the intensity of deep convective events appears to be the convection depth of the previous year
    • 

    corecore