388 research outputs found

    Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions

    Full text link
    The strong influence of the electron dynamics provides the possibility of controlling the expansion of laser-produced plasmas by appropriately shaping the laser pulse. A simple irradiation scheme is proposed to tailor the explosion of large deuterium clusters, inducing the formation of shock structures, capable of driving nuclear fusion reactions. Such a scenario has been thoroughly investigated, resorting to two- and three-dimensional particle-in-cell simulations. Furthermore, the intricate dynamics of ions and electrons during the collisionless expansion of spherical nanoplasmas has been analyzed in detail using a self-consistent ergodic-kinetic model. This study clarifies the transition from hydrodynamic-like to Coulomb-explosion regimes

    All-optical trapping and acceleration of heavy particles

    Full text link
    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.Comment: 10 pages, 3 figures, to appear in New Journal of Physic

    Effect of Nedocromil Sodium on Polymorphonuclear Leukocyte Plasma Membrane

    Get PDF
    The effect of nedocromil sodium on the plasma membrane fluidity of polymorphonuclear leukocytes (PMNs) was investigated by measuring steady-state fluorescence anisotropy of 1-[4-trimethylammonium-phenyl]-6-phenyl- 1,3,5-hexatriene (TMA-DPH) incorporated in the membrane. Our results show that nedocromil sodium 300 ÎĽM significantly decreased membrane fluidity of PMNs. The decrease in membrane fluidity of PMNs induced by fMLP was abolished in the presence of nedocromil sodium. These data suggest that nedocromil sodium interferes with the plasma membranes of PMNs and modulates their activities

    Transcriptome of male breast cancer matched with germline profiling reveals novel molecular subtypes with possible clinical relevance

    Get PDF
    SIMPLE SUMMARY: Breast cancer in men is a rare disease; however, morbidity and mortality in male breast cancer (MBC) patients is a serious concern. The identification of specific molecular features in MBC is essential for developing more appropriate and targeted therapeutic strategies for MBC patients. In this study, by transcriptome analysis of 63 MBCs characterized for germline mutations in the most relevant BC susceptibility genes, mainly BRCA1/2, we highlighted possible differences in the molecular pathways underlying MBC pathogenesis in relation to germline mutation status. Furthermore, we identified two distinct subgroups of MBCs of clinical relevance, which are characterized by different biological features and prognosis. Overall, our results showed that transcriptome profiling by RNA sequencing is a valuable approach to dissect the molecular heterogeneity of MBC and suggest that the transcriptome matched with germline profiling may lead to the identification of MBC subtypes with possible relevance in the clinical setting, which is a primary step to improve the clinical management of MBC patients. ABSTRACT: Male breast cancer (MBC) is a rare and understudied disease compared with female BC. About 15% of MBCs are associated with germline mutation in BC susceptibility genes, mainly BRCA1/2 and PALB2. Hereditary MBCs are likely to represent a subgroup of tumors with a peculiar phenotype. Here, we performed a whole transcriptome analysis of MBCs characterized for germline mutations in the most relevant BC susceptibility genes in order to identify molecular subtypes with clinical relevance. A series of 63 MBCs, including 16 BRCA2, 6 BRCA1, 2 PALB2, 1 RAD50, and 1 RAD51D germline-mutated cases, was analyzed by RNA-sequencing. Differential expression and hierarchical clustering analyses were performed. Module signatures associated with central biological processes involved in breast cancer pathogenesis were also examined. Different transcriptome profiles for genes mainly involved in the cell cycle, DNA damage, and DNA repair pathways emerged between MBCs with and without germline mutations. Unsupervised clustering analysis revealed two distinct subgroups, one of which was characterized by a higher expression of immune response genes, high scores of gene-expression signatures suggestive of aggressive behavior, and worse overall survival. Our results suggest that transcriptome matched with germline profiling may be a valuable approach for the identification and characterization of MBC subtypes with possible relevance in the clinical setting

    po 320 gene panel mutation screening for a better molecular stratification of colorectal cancer patients

    Get PDF
    Introduction Colorectal carcinoma (CRC) is one of the most commonly diagnosed cancers worldwide. The metastatic disease contributes to the high mortality rate reported for such tumours. Significant benefit on overall survival was brought about the introduction of monoclonal antibodies anti-EGFR and anti-VEGF used in combination with chemotherapy in metastatic CRC (mCRC). While anti-VEGF treatment does not require biomarker-based selection criteria, the potential efficacy of anti-EGFR antibodies is neglected to patients with activating mutations in KRAS and NRAS (RAS) genes, whose molecular analysis became a clinical routine. The advent of Next Generation Sequencing (NGS) instruments, able to reach quick testing of multiple clinically-relevant hotspots, yet maintaining precision and low costs, allows the simultaneous determination of the mutation status of an expanding number of genes. Despite only few of these molecular biomarkers have gained clinical utility in the routine oncological practice, the acquisition of more complex cancer mutational patterns may provide more efficient tumour characterisation for prognostic and predictive purposes and highlight actionable targets. Material and methods We sequenced 639 mCRC samples by IT-PGM platform using a panel of hotspots and targeted regions of 22 genes (including RAS) commonly involved in CRCs. MSI analyses on 89 patients have been performed with a single fluorescent system comprising BAT25 and BAT26 mononucleotide repeats. Results and discussions We identified recurrent mutations (≥1%) in 12/22 genes, being KRAS, TP53 and PIK3CA the most frequently mutated ones. Statistical analysis, indicated that the mutation associations follow a non-random distribution. Categorization of the cases on the base of KRAS and p53 mutation status led us the definition of 8 Mutation Association Patterns (MAPs) characterised by specific mutation associations. Analysis of the clinicopathological data available for 89 out of 639 cases indicates interesting trends for the associations of MAPs with specific parameters, some of which reached statistical significance. Conclusion Application of NGS gene panel as a routine for the characterisation of RAS/BRAF status required for predictive purposes in CRC patients, may provide additional prognostic/predictive information, with no significant extra-costs

    The dependence of Galactic outflows on the properties and orientation of zCOSMOS galaxies at z ~ 1

    Full text link
    We present an analysis of cool outflowing gas around galaxies, traced by MgII absorption lines in the co-added spectra of a sample of 486 zCOSMOS galaxies at 1 < z < 1.5. These galaxies span a range of stellar masses (9.45< log[M*/Msun]<10.7) and star formation rates (0.14 < log [SFR/Msun/yr] < 2.35). We identify the cool outflowing component in the MgII absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong effect with star formation surface density ({\Sigma}SFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -200 km/s to -300 km/s and on average the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit minimum mass outflow rates > 5-7 Msun/yr and a mass loading factor ({\eta} = dMout/dt /SFR) comparable to the star formation rates of the galaxies.Comment: 12 pages, 14 figures, ApJ submitte

    The zCOSMOS 20k Group Catalog

    Get PDF
    We present an optical group catalog between 0.1 < z < 1 based on 16,500 high-quality spectroscopic redshifts in the completed zCOSMOS-bright survey. The catalog published herein contains 1498 groups in total and 192 groups with more than five observed members. The catalog includes both group properties and the identification of the member galaxies. Based on mock catalogs, the completeness and purity of groups with three and more members should be both about 83% with respect to all groups that should have been detectable within the survey, and more than 75% of the groups should exhibit a one-to-one correspondence to the "real" groups. Particularly at high redshift, there are apparently more galaxies in groups in the COSMOS field than expected from mock catalogs. We detect clear evidence for the growth of cosmic structure over the last seven billion years in the sense that the fraction of galaxies that are found in groups (in volume-limited samples) increases significantly with cosmic time. In the second part of the paper, we develop a method for associating galaxies that only have photo-z to our spectroscopically identified groups. We show that this leads to improved definition of group centers, improved identification of the most massive galaxies in the groups, and improved identification of central and satellite galaxies, where we define the former to be galaxies at the minimum of the gravitational potential wells. Subsamples of centrals and satellites in the groups can be defined with purities up to 80%, while a straight binary classification of all group and non-group galaxies into centrals and satellites achieves purities of 85% and 75%, respectively, for the spectroscopic sample.Comment: 26 pages, 21 figures, published in ApJ (along with machine-readable tables
    • …
    corecore