8 research outputs found

    Taming the terminological tempest in invasion science

    Get PDF
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Taming the terminological tempest in invasion science

    Get PDF
    Standardized terminology in science is important for clarity of interpretation and communication. In invasion science — a dynamic and quickly evolving discipline — the rapid proliferation of technical terminology has lacked a standardized framework for its language development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damages and interventions. A standardized framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardizing terminology across stakeholders remains a prevailing challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalized, 'pest') to propose a more simplified and standardized terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' — populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualizing 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (1) dispersal mechanism, (2) species origin, (3) population status, and (4) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Water bugs (Heteroptera: Gerromorpha, Nepomorpha) of the Caucasus ecoregion

    No full text
    The Caucasian fauna of water bugs (Heteroptera: Gerromorpha, Nepomorpha) is reviewed based on data originating from literature survey, museum and private collections, and extensive field sampling. The diversity of Caucasus ecoregion is quite significant with 77 species and subspecies framed within 25 genera (17 in Nepomorpha, 8 in Gerromorpha), and 13 families (8 in Nepomorpha, 5 in Gerromorpha). Micronecta anatolica anatolica Lindberg, 1922, Sigara iranica Lindberg, 1964, S. samani tigranes Jansson, 1986, Velia kiritshenkoi Tamanini, 1958, and Gerris asper (Fieber, 1860) are reported for the first time from Georgia, M. anatolica anatolica, Notonecta maculata Fabricius, 1794, Mesovelia thermalis HorvĂĄth, 1915, and Gerris lacustris (Linnaeus, 1758) represent new records for Armenia, and Microvelia macani Brown, 1953 is new for Azerbaijan. A chorological and similarity analysis highlighted the connections with and between adjacent countries, with Caucasus ecoregion having the highest similarity of the water bug fauna with Turkey, whereas Iran and Russia (European territory) have the lowest. The largest number of shared species/subspecies was found between the Caucasus and Turkey (64 taxa), while the lowest was between Iran and Russia (40 taxa). Our results indicate that the Caucasus represents a composite of various faunal elements of different origin, ranging from Caucasian endemics to Afrotropico-Indo-Mediterranean and Holarctic

    Taming the terminological tempest in invasion science

    No full text
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    Taming the terminological tempest in invasion science

    No full text
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non‐native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non‐indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non‐native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non‐native’, i.e. those non‐native species that have established self‐sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non‐native’ – populations of established non‐native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non‐native species

    Taming the terminological tempest in invasion science

    No full text
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.<br/
    corecore