150 research outputs found

    Genetics, Ancestry, and Hypertension: Implications for Targeted Antihypertensive Therapies

    Get PDF
    Hypertension is the most common chronic condition seen by physicians in ambulatory care and a condition for which life-long medications are commonly prescribed. There is evidence for genetic factors influencing blood pressure variation in populations and response to medications. This review summarizes recent genetic discoveries that surround blood pressure, hypertension, and antihypertensive drug response from genome-wide association studies, while highlighting ancestry-specific findings and any potential implication for drug therapy targets. Genome-wide association studies have identified several novel loci for inter-individual variation of blood pressure and hypertension risk in the general population. Evidence from pharmacogenetic studies suggests that genes influence the blood pressure response to antihypertensive drugs, although results are somewhat inconsistent across studies. There is still much work that remains to be done to identify genes both for efficacy and adverse events of antihypertensive medications

    Pharmacometabolomics reveals racial differences in response to atenolol treatment.

    Get PDF
    Antihypertensive drugs are among the most commonly prescribed drugs for chronic disease worldwide. The response to antihypertensive drugs varies substantially between individuals and important factors such as race that contribute to this heterogeneity are poorly understood. In this study we use metabolomics, a global biochemical approach to investigate biochemical changes induced by the beta-adrenergic receptor blocker atenolol in Caucasians and African Americans. Plasma from individuals treated with atenolol was collected at baseline (untreated) and after a 9 week treatment period and analyzed using a GC-TOF metabolomics platform. The metabolomic signature of atenolol exposure included saturated (palmitic), monounsaturated (oleic, palmitoleic) and polyunsaturated (arachidonic, linoleic) free fatty acids, which decreased in Caucasians after treatment but were not different in African Americans (p<0.0005, q<0.03). Similarly, the ketone body 3-hydroxybutyrate was significantly decreased in Caucasians by 33% (p<0.0001, q<0.0001) but was unchanged in African Americans. The contribution of genetic variation in genes that encode lipases to the racial differences in atenolol-induced changes in fatty acids was examined. SNP rs9652472 in LIPC was found to be associated with the change in oleic acid in Caucasians (p<0.0005) but not African Americans, whereas the PLA2G4C SNP rs7250148 associated with oleic acid change in African Americans (p<0.0001) but not Caucasians. Together, these data indicate that atenolol-induced changes in the metabolome are dependent on race and genotype. This study represents a first step of a pharmacometabolomic approach to phenotype patients with hypertension and gain mechanistic insights into racial variability in changes that occur with atenolol treatment, which may influence response to the drug

    Genotype-Guided Hydralazine Therapy

    Get PDF
    Background: Despite its approval in 1953, hydralazine hydrochloride continues to be used in the management of resistant hypertension, a condition frequently managed by nephrologists and other clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We then assess the evidence available for genotype-guided therapy of hydralazine, specifically addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, antihypertensive efficacy, and toxicity. Summary: There is a critical need to use hydralazine in some patients with resistant hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme activity as 29 studies were identified with an overall concordance between genotype and phenotype of 92%. The literature also supports an association between acetylator status and hydralazine concentration, as fourteen of fifteen identified studies revealed significant relationships with a consistent direction of effect. Although fewer studies are available to directly link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set of studies is significant in 7 of 9 studies identified. Finally, 5 studies were identified which support the association of acetylator status with hydralazine-induced lupus. Clinicians should maintain vigilance when prescribing maximum doses of hydralazine. Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and safe treatment of resistant hypertension

    Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenergic gene polymorphisms are associated with cardiovascular and metabolic phenotypes. We investigated the influence of adrenergic gene polymorphisms on cardiovascular risk in women with suspected myocardial ischemia.</p> <p>Methods</p> <p>We genotyped 628 women referred for coronary angiography for eight polymorphisms in the α<sub>1A</sub>-, ÎČ<sub>1</sub>-, ÎČ<sub>2</sub>- and ÎČ<sub>3</sub>-adrenergic receptors (<it>ADRA1A</it>, <it>ADRB1, ADRB2</it>, <it>ADRB3</it>, respectively), and their signaling proteins, G-protein ÎČ 3 subunit (<it>GNB3</it>) and G-protein α subunit (<it>GNAS</it>). We compared the incidence of death, myocardial infarction, stroke, or heart failure between genotype groups in all women and women without obstructive coronary stenoses.</p> <p>Results</p> <p>After a median of 5.8 years of follow-up, 115 women had an event. Patients with the <it>ADRB1 </it>Gly389 polymorphism were at higher risk for the composite outcome due to higher rates of myocardial infarction (adjusted hazard ratio [HR] 3.63, 95% confidence interval [95%CI] 1.17–11.28; Gly/Gly vs. Arg/Arg HR 4.14, 95%CI 0.88–19.6). The risk associated with <it>ADRB1 </it>Gly389 was limited to those without obstructive CAD (n = 400, P<sub>interaction </sub>= 0.03), albeit marginally significant in this subset (HR 1.71, 95%CI 0.91–3.19). Additionally, women without obstructive CAD carrying the <it>ADRB3 </it>Arg64 variant were at higher risk for the composite endpoint (HR 2.10, 95%CI 1.05–4.24) due to subtle increases in risk for all of the individual endpoints. No genetic associations were present in women with obstructive CAD.</p> <p>Conclusion</p> <p>In this exploratory analysis, common coding polymorphisms in the ÎČ<sub>1</sub>- and ÎČ<sub>3</sub>-adrenergic receptors increased cardiovascular risk in women referred for diagnostic angiography, and could improve risk assessment, particularly for women without evidence of obstructive CAD.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00000554.</p

    Aromatase Gene Polymorphisms Are Associated with Survival among Patients with Cardiovascular Disease in a Sex-Specific Manner

    Get PDF
    CYP19A1 encodes aromatase, the enzyme responsible for the conversion of androgens to estrogens, and may play a role in variation in outcomes among men and women with cardiovascular disease. We sought to examine genetic variation in CYP19A1 for its potential role in sex differences in cardiovascular disease outcomes.Caucasian individuals from two independent populations were assessed: 1) a prospective cohort of patients with acute coronary syndromes with 3-year mortality follow-up (n = 568) and 2) a nested case-control study from a randomized, controlled trial of hypertension patients with stable coronary disease in which the primary outcome was death, nonfatal myocardial infarction (MI) or nonfatal stroke (n = 619). Six CYP19A1 SNPs were genotyped (-81371 C>T, -45965 G>C, M201T, R264C, 80 A>G, and +32226 G>A). The sex*genotype interaction term was assessed for the primary outcome and compared by genotype in men and women when a significant interaction term was identified.We identified a significant interaction between -81371 C>T and sex (p = 0.025) in the ACS population. The variant allele was associated with a 78% increase in mortality in men (HR 1.78, 95% confidence interval [CI] 1.08-2.94) and a nonsignificant 42% decrease in mortality among women (HR 0.58, 95% CI 0.22-1.54). We identified a similar association in the hypertensive CAD group, the -81371 C>T*sex interaction term was p<0.0001, with an associated 65% increase in death, MI, or stroke (HR 1.65, 95% CI 1.00-2.73) in men and a 69% decrease (HR 0.31, 95% CI 0.16-0.6) in women.Using two independent populations, this study is the first to document a significant interaction between CYP19A1 genotype and sex on cardiovascular outcomes. These findings could illuminate potential mechanisms of sex differences in cardiovascular disease outcomes

    Branched-chain amino acid, meat intake and risk of type 2 diabetes in the Women's Health Initiative

    Get PDF
    Knowledge regarding association of dietary branched-chain amino acid (BCAA) and type 2 diabetes (T2D), and the contribution of BCAA from meat to the risk of T2D are scarce. We evaluated associations between dietary BCAA intake, meat intake, interaction between BCAA and meat intake and risk of T2D. Data analyses were performed for 74 155 participants aged 50-79 years at baseline from the Women's Health Initiative for up to 15 years of follow-up. We excluded from analysis participants with treated T2D, and factors potentially associated with T2D or missing covariate data. The BCAA and total meat intake was estimated from FFQ. Using Cox proportional hazards models, we assessed the relationship between BCAA intake, meat intake, and T2D, adjusting for confounders. A 20 % increment in total BCAA intake (g/d and %energy) was associated with a 7 % higher risk for T2D (hazard ratio (HR) 1·07; 95 % CI 1·05, 1·09). For total meat intake, a 20 % increment was associated with a 4 % higher risk of T2D (HR 1·04; 95 % CI 1·03, 1·05). The associations between BCAA intake and T2D were attenuated but remained significant after adjustment for total meat intake. These relations did not materially differ with or without adjustment for BMI. Our results suggest that dietary BCAA and meat intake are positively associated with T2D among postmenopausal women. The association of BCAA and diabetes risk was attenuated but remained positive after adjustment for meat intake suggesting that BCAA intake in part but not in full is contributing to the association of meat with T2D risk

    Multi-Institutional Implementation of Clinical Decision Support for APOL1, NAT2, and YEATS4 Genotyping in Antihypertensive Management

    Get PDF
    (1) Background: Clinical decision support (CDS) is a vitally important adjunct to the implementation of pharmacogenomic-guided prescribing in clinical practice. A novel CDS was sought for the APOL1, NAT2, and YEATS4 genes to guide optimal selection of antihypertensive medications among the African American population cared for at multiple participating institutions in a clinical trial. (2) Methods: The CDS committee, made up of clinical content and CDS experts, developed a framework and contributed to the creation of the CDS using the following guiding principles: 1. medical algorithm consensus; 2. actionability; 3. context-sensitive triggers; 4. workflow integration; 5. feasibility; 6. interpretability; 7. portability; and 8. discrete reporting of lab results. (3) Results: Utilizing the principle of discrete patient laboratory and vital information, a novel CDS for APOL1, NAT2, and YEATS4 was created for use in a multi-institutional trial based on a medical algorithm consensus. The alerts are actionable and easily interpretable, clearly displaying the purpose and recommendations with pertinent laboratory results, vitals and links to ordersets with suggested antihypertensive dosages. Alerts were either triggered immediately once a provider starts to order relevant antihypertensive agents or strategically placed in workflow-appropriate general CDS sections in the electronic health record (EHR). Detailed implementation instructions were shared across institutions to achieve maximum portability. (4) Conclusions: Using sound principles, the created genetic algorithms were applied across multiple institutions. The framework outlined in this study should apply to other disease-gene and pharmacogenomic projects employing CDS
    • 

    corecore