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Abstract

Background: Despite its approval in 1953, hydralazine hydrochloride continues to be used in the 

management of resistant hypertension, a condition frequently managed by nephrologists and other 

clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) 

enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow 

acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We 

then assess the evidence available for genotype-guided therapy of hydralazine, specifically 

addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, 

antihypertensive efficacy, and toxicity.

Summary: There is a critical need to use hydralazine in some patients with resistant 

hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme 

activity as 29 studies were identified with an overall concordance between genotype and 

phenotype of 92%. The literature also supports an association between acetylator status and 

hydralazine concentration, as fourteen of fifteen identified studies revealed significant 

relationships with a consistent direction of effect. Although fewer studies are available to directly 

link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set 

of studies is significant in seven of nine studies identified. Finally, five studies were identified 

which support the association of acetylator status with hydralazine-induced lupus. Clinicians 

should maintain vigilance when prescribing maximum doses of hydralazine.

Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may 

lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with 

total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower 

doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can 

adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and 

safe treatment of resistant hypertension.
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Introduction

The application of pharmacogenomics to antihypertensive dose and agent selection is still a 

nascent endeavor. No current society guidelines from the clinical pharmacogenetics 

implementation consortium (CPIC) exist for any antihypertensive agent. Nephrologists and 

other providers frequently evaluate and treat resistant hypertension, individualizing a 

regimen from the best combination of three or more antihypertensive agents (1), often from 

trial and error. Nephrologists and other providers managing resistant hypertension would 

benefit from a mechanism to expeditiously arrive at an optimal antihypertensive regimen.

The hydralazine hydrochloride and N-acetyltransferase 2 (NAT2) drug-enzyme pair is an 

attractive candidate for which to implement genotype-guided therapy. NAT2 is a very 

important pharmacogene, contributing to phase II hepatic metabolism of many drugs (2). As 

of 2020, the National Center for Biotechnology Information (NCBI) lists ten laboratories 

that provide commercial testing for NAT2 genotype on its genetic testing registry, raising the 

question of what guidance is provided by these commercial laboratories to clinicians (3). 

The United States Food & Drug Administration (FDA) labels for Apresoline (hydralazine 

hydrocholoride) monotherapy and the combination therapy BiDil (isosorbide dinitrate and 

hydralazine hydrochloride) both support the use of acetylation status to determine 

bioavailability (4, 5). The hydralazine drug label states, “slow acetylators generally have 

higher plasma levels of hydralazine and require lower doses to maintain control of blood 

pressure.” However, no suggestions on specific dose adjustments are provided. In February 

2020, the FDA released an updated table of pharmacogenetic associations, in which NAT2 

enzyme activity was included as a predictor of hydralazine systemic concentration (6).

Hydralazine is an old drug, having received FDA approval in 1953. However, it is still 

commonly used in resistant hypertension and as a first line therapy for afterload reduction in 

African Americans with heart failure (7). In the Indiana University Healthcare system, NAT2 
genotyping has been performed clinically as part of an antihypertensive pharmacogenomics 

panel since 2017, with results available to the clinician in the electronic health record (8, 9). 

Among the 580 individuals who received antihypertensive pharmacogenomic testing in 

kidney clinic, 13% of all renal patients were prescribed hydralazine (alone or in combination 

with isosorbide dinitrate), including 25% of all African Americans. Approximately 50% of 

these individuals are fast or intermediate acetylators (i.e. normal or intermediate 

metabolizers). Fast or intermediate acetylators require 140% to 225% of the dose that slow 

acetylators (i.e. poor metabolizers) require to have the same hydralazine exposure (10). 

Given the wide range of FDA approved total oral daily doses from 40 mg daily to 300 mg, 

there is potential utility in dose adjustment and titration based on acetylation status. Slow 

acetylators are predicted to have higher circulating concentrations of the parent drug, with 

increased antihypertensive efficacy, but also a higher potential risk of adverse events.
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In this review, we examine the evidence surrounding genotype-guided dosing of hydralazine, 

briefly reviewing metabolism before establishing a critical link between NAT2 genotype and 

the NAT2 enzyme activity phenotype. Some of the evidence presented originates from an era 

before the completion of human genome sequencing. As a result, enzyme activity often 

serves as a surrogate for genotype. We then examine evidence linking enzyme activity or its 

predictive genotype to hydralazine drug levels, efficacy in blood pressure reduction, and 

adverse events, with a focus on drug-induced lupus.

Hydralazine Metabolism

Hydralazine hydrochloride is a parent drug and active compound which undergoes first pass 

hepatic metabolism by the polymorphic NAT2 enzyme into primarily inactive metabolites 

(Fig. 1) (11). The two acetylation pathways involve direct acetylation to form 3-

methyl-1,2,4-triazolo-[3,4a] phtalazine (MTP) and 3-hydroxymethyl-1,2,4-triazolo-[3,4a] 

phtalazine (3OH-MTP) downstream, and oxidation to form an intermediate, hydralazine 

pyruvic acid hydrazone (HPZ), followed by acetylation to form N-acetyl-hydrazine-

phthalazinone (NAc-HPZ) (2, 12). The major circulating metabolite is hydralazine pyruvic 

acid hydrazone (HPH), which may be renally excreted or undergo further metabolism. Older 

studies may also use the term acid-labile hydralazine (HP), which refers to the sum of the 

concentration of parent hydralazine and its acid-labile metabolites like HPH, which were 

indistinguishable on gas-liquid chromatography.

Concordance between NAT2 Phenotype and Genotype

The N-acetyltransferase (NAT2) acetylator phenotype is determined by measuring the 

pharmacokinetics of a NAT2 probe drug. This process entails orally administering the probe 

drug and measuring the parent and/or metabolite concentrations in the urine. A histogram of 

the parent/metabolite ratios or percentage of parent drug acetylated often yields a bimodal 

distribution through which the fast or slow metabolizer status can be differentiated. In some 

cases, a distinct intermediate group can be identified (13, 14). However, intermediate 

acetylators are frequently indistinguishable from fast acetylators and considered functionally 

similar (15). Although sulfamethazine is the gold standard for NAT2 phenotyping, other 

commonly used drugs to assess acetylator status include isoniazid or caffeine. In a study of 

26 surgical patients, there was a significant positive correlation between caffeine and 

sulfamethazine phenotyping (r=0.98). This acetylator activity also correlated with 

immunodetectable levels of NAT1 and NAT2 protein (r=0.92) (16).

By studying the family history of individuals classified as slow or fast acetylators, NAT2 

acetylator status was discovered to be genetically inherited (17–19). With the onset of 

sequencing and genotyping as available tools, scientists have identified the polymorphisms 

responsible for altered acetylation and the polymorphisms have been directly correlated to 

the probe-drug phenotyping results. Across 29 different studies identified, a diverse array of 

populations was examined including Asian-Indian, African American, Canadian, Caucasian, 

Chinese, Emirati, Ethiopian, French, German, Greenlandic, Hawaiian, Hispanic, Hmong, 

Japanese, Latin-American, Native South African, Pakistani, Polish, Russian, Swedish and 

Swiss populations (13, 14, 20–47).
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The genotypes most commonly assessed in 90% of these studies include the *5, *6, and *7 

alleles, all of which are associated with reduced function (Table 1). The *14 reduced 

function allele was only assessed in nine studies, but is predominately found in individuals 

of African ancestry. In a study of 35 African Americans and 7 Caucasians, concordance was 

90% when using caffeine phenotyping to align with the *4, *5, *6, and *7 alleles. However, 

the *14 variant was identified in all four discordant individuals and was only present in 

African Americans. When reassessed with this variant allele, concordance was 100% (23). 

The 5, *6, *7, and *14 alleles are all non-synonymous variants. The synonymous *11 

normal functioning allele is assessed in two studies, and the *12 (nonsynonymous) and *13 

(synonymous) normal functioning alleles were assessed in less than half of the studies. The 

overall concordance of NAT2 genotype to NAT2 enzymatic activity phenotype is very strong 

at 92% (4060/4398 individuals) across all 29 studies (Table 2).

There is evidence to suggest slow acetylators can be further sub-categorized into slow and 

very slow acetylator phenotypes. Individuals with two copies of either the *6 or *7 allele 

have more profoundly reduced acetylation as compared to those with the *5 reduced 

function allele (26, 40, 48). However, most studies measuring hydralazine concentration or 

blood pressure phenotypes do not separately analyze the *5 allele from the *6 or *7 alleles; 

thus, further evidence is required to understand whether a distinction in slow and very slow 

acetylators will prove clinically relevant. The *12 and *13 allelic function may require a 

reassessment as well, since they have been associated with a discordance in phenotyping 

results (25). For example, the *12 allele is a missense variant despite its consideration as 

functionally normal and the *13 allele has been associated with decreased acetylation 

capacity compared to the *5 reduced functioning allele (26). Among the three studies 

assessed in this review with a phenotype-genotype concordance less than 70%, one observed 

no separation in the distribution of its caffeine phenotyping results and the other two 

included the *12 and *13 variants (37, 44, 45). As a result, our approach has been to adopt 

the 4-SNP model proposed by Hein et al (8, 33). This 4-SNP model includes the *5, *6, *7, 

and *14 alleles and shows equivalent NAT2 phenotyping concordance (98.4%) compared to 

a 7-SNP model (98.4%) with the *11, *12, and *13 alleles included (33).

Among the 29 studies, there is clear evidence regarding the association between NAT2 

phenotypes and genotypes. The 4-SNP model accurately predicts fast and slow acetylator 

status in multiple populations. This is important as early studies regarding hydralazine 

concentration, efficacy and toxicity often determine acetylator status by phenotyping using a 

probe drug.

Effects of Predicted NAT2 Activity on Hydralazine Concentrations

A preponderance of evidence supports the correlation between NAT2 enzyme activity (or its 

predictive genotype) with urine and plasma hydralazine concentrations (Table 2). This 

association has been shown in a diverse array of populations, with studies dating back to the 

early 1970s. The association has also been recognized in the FDA’s Table of 

Pharmacogenetic Associations and mentioned in the drug labels of BiDil and Apresoline (4–

6).
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For example, in one study of 47 patients on maintenance hydralazine dosed at 50, 100, 150, 

200, or 300 mg daily for the treatment of essential hypertension, a significant difference in 

the 3-OHMTP/HP ratio was found between fast and slow acetylators taking 100 mg of 

hydralazine daily (7.3 to 2.3, p<0.01) and 200 mg of hydralazine daily (14.9 to 1.5, p<0.001) 

(49). These 47 individuals were phenotyped utilizing the sulfamethazine method, which 

identified 22 slow and 25 fast acetylators. The study concluded that the metabolism of 

hydralazine was dose-dependent in fast acetylators, where higher doses resulted in greater 

acetylation of hydralazine.

In a similar study of 26 healthy male volunteers given a single dose of 182 mg of controlled-

release hydralazine, the area the under the curve (AUC) and maximum concentration 

(Cmax) of plasma hydralazine levels were significantly higher for slow acetylators 

compared to fast acetylators (4,990.6 ± 1532.3 ng·h/mL vs 2,233.6 ± 663.5 ng·h/mL for 

AUC, and 470.4 ± 162.8 ng/mL vs 208.4 ± 56.9 ng/mL for Cmax, respectively) (10). 

Acetylator phenotype was determined using the sulfamethazine method, identifying 13 slow 

and 13 fast acetylators. The second part of this study focused on 85 cancer patients using the 

same phenotyping method, but dosed the patients based on acetylator status (fast acetylators 

receiving 182 mg and slow acetylators receiving 83 mg). This 119% dose increase strategy 

was modeled upon the ratio of hydralazine AUC in the earlier healthy volunteer portion of 

this study. There were 37 slow and 48 fast acetylators in this population. Despite the over 2-

fold difference in dose, the plasma hydralazine levels were similar between fast and slow 

acetylators (239.1 ± 81.7 ng/mL vs 259.2 ± 148.5 ng/mL for mean concentration). This trial 

highlighted the importance of obtaining the acetylator phenotype and that the hydralazine-

acetylator relationship remains, even in a special cancer population.

A more recent study included 12 pregnant women treated for essential hypertension taking 

5–25 mg of hydralazine every 6 hours (11). Acetylator status was determined using NAT2 
genotyping of the *4, *5, *6, and *7 alleles. These patients consisted of 3 slow and 2 fast 

acetylators in the second trimester, and 3 slow and 4 fast acetylators in the third trimester. 

Results revealed that dose-normalized AUC and Cmax hydralazine concentrations were 

higher in slow acetylators compared to fast acetylators (AUC: 5.9 ± 3.7 ng·h/mL vs 1.5 ± 0.8 

ng·h/mL, Cmax: 4.04 ± 3.18 ng/mL vs 0.77 ± 0.51 ng/mL). The inverse was observed for 

MTP concentrations with fast acetylators having a higher dose-normalized AUC and Cmax 

of the metabolite compared to slow acetylators (AUC: 118.1 ± 64.9 ng·h/mL vs 56.4 ± 40.7 

ng·h/mL, Cmax: 32.3 ± 11.7 ng/mL vs 15.0 ± 8.8 ng/mL). Thus, acetylation status remains 

relevant in pregnancy.

The three studies above suggest that evidence supports an association between acetylator 

phenotype or genotype and hydralazine concentrations. Similar findings were observed in 

other populations: Asian, African American, British, Kenyan, Mexican, Native Hawaiian, 

and Pacific Islanders (Table 2) (50–60). Thus, a consistent and significant relationship 

between acetylator status and hydralazine concentration exists across a spectrum of 

populations.
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Effects of Predicted NAT2 Activity on Hydralazine Efficacy

A smaller subset of studies offer evidence beyond pharmacokinetics, finding that an 

individual’s NAT2 genotype or phenotype also predicts the antihypertensive efficacy of 

hydralazine (Table 2) (59, 61–68). These studies either show: 1) hydralazine is a more 

effective antihypertensive in slow acetylators than fast acetylators or 2) a higher dose is 

required to achieve equivalent efficacy in fast acetylators. Overall, the direction of effect of 

these studies are in agreement, providing a clear association between acetylator status and 

therapeutic response from hydralazine.

In a 1972 study of 20 subjects with moderate to severe hypertension treated with a 

combination of hydralazine, hydrochlorothiazide, and propranolol, the plasma concentration 

of hydralazine and blood pressure were both associated with NAT2 phenotype (59). The 

sulphamethazine method identified 13 slow and 7 fast acetylators. Slow acetylators were 

shown to have a higher mean plasma hydralazine concentration (5.1 μg/ml) compared to fast 

acetylators (3.0 μg/ml) on a daily dose of 1.5 mg/kg. The hydralazine dose-normalized 

plasma concentrations were calculated to be 1.7-fold higher in slow acetylators than fast 

acetylators (p<0.005). These hydralazine plasma levels positively correlated with a reduction 

in supine mean arterial pressure (p<0.01). Ultimately, the study determined that when 

hydralazine was administered with the two other blood pressure medications, satisfactory 

blood pressure control was achieved with a mean dose of 2.4 mg/kg/day in slow acetylators 

and 3.7 mg/kg/day in fast acetylators.

A second study reached similar conclusions regarding combination regimens containing 

hydralazine (63). Thirty-seven subjects were randomized into a double-blind crossover study 

to validate the efficacy of hydralazine in combination therapy. The phenotyping method in 

this study was not disclosed. However, only 5 of 9 fast acetylators achieved satisfactory 

blood pressure control compared to 19 out of the 20 slow acetylators (p<0.02). Of note, eight 

of the slow acetylators developed side effects attributable to hydralazine whereas no side 

effects were observed in the 9 fast acetylators (p=0.028).

In a third study of 25 patients with mild to moderate essential hypertension on hydralazine 

combination therapy, phenotype was determined by the sulphamethazine method (62). 

Results showed a correlation between daily doses of hydralazine and plasma hydralazine 

levels in both slow acetylators (r=0.480) and fast acetylators (r=0.580). A significant 

reduction of supine diastolic blood pressure was greater in slow acetylators (23 mmHg) 

compared to fast acetylators (15 mmHg) (p<0.05). The investigators also determined that the 

dose required to reduce supine systolic blood pressure by 20 mmHg in slow acetylators was 

1.0 mg/kg, equivalent to 1.4 mg/kg in fast acetylators.

The antihypertensive response to hydralazine following administration by both the oral and 

IV routes has been investigated in a pair of studies using the sulphamethazine method to 

determine phenotype. The initial phase of the study was a longitudinal observation study of 

9 patients with essential hypertension on oral hydralazine (66). It then followed these nine 

individuals with single dose and multiple dose oral hydralazine, both dosing hydralazine at 1 

mg/kg. The study reported that there was an inverse relationship between acetylator index 

and the change in mean arterial pressure (MAP) following both single (p<0.05) and multiple 
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oral doses of hydralazine (p<0.01). The study concluded that among these nine individuals, 

the acetylator phenotype was a major determinant of response and that plasma 

concentrations of hydralazine were lower in fast than slow acetylator phenotype patients. A 

second phase of this study evaluated IV hydralazine response in 13 individuals (65), finding 

a similar inverse correlation between acetylator index and the change in mean arterial 

pressure (r=−0.6168, p<0.05).

In the largest study of NAT2 phenotype and antihypertensive response to hydralazine, 181 

subjects across 5 different sites were divided into groups taking immediate release 

hydralazine or extended release hydralazine (61). Phenotype was determined using the 

sulphamethazine method. Their modeling indicated that the daily dose that elicited 50% of 

the maximum response was 0.87 mg/kg for slow acetylators and 1.68 mg/kg for fast 

acetylators. Extended hydralazine therapy was estimated to reduce blood pressure by 0.524 

mmHg per week or roughly 4 mmHg over this 7-week period. In combination with a beta-

blocker and diuretic, the blood pressure reduction increased to 6.54 mmHg.

The only study to specifically address the relationship of NAT2 genotype and 

antihypertensive response was a Brazilian study of 169 subjects already taking hydralazine 

to control resistant hypertension (68). These patients were genotyped for the *4, *5, *6, *7, 

*12, *13, and *14 alleles in order to determine acetylator status. The genotyping resulted in 

65 (38.5%) intermediate, 60 (35.5%) slow, and 21 (12.4%) fast acetylators in the population. 

The remaining patients were indeterminate. Significant reductions in blood pressure were 

only observed in the slow acetylators. Mean 24 hour systolic and diastolic reductions in slow 

acetylators were 9.2 mmHg and 5.5 mmHg, respectively, and clinic blood pressures were 

reduced by 18.6 mmHg systolic and 8.8 mmHg diastolic. Moreover, it was concluded that 

hydralazine reduced both daytime and night-time blood pressure equally.

The evidence from seven identified studies reveals an association between an individual’s 

NAT2 phenotype or genotype and hydralazine efficacy (Table 2). One small study did not 

reach significance, but the observed effect on peripheral vascular resistance was still 

consistent with the expected direction of effect (64). A second study observed no difference 

in blood pressure control among individuals who received the same hydralazine dose on 

average (67). Additional studies which directly compare genotype to antihypertensive 

response would be valuable to confirm this relationship since most studies utilize NAT2 

phenotype rather than genotype.

Hydralazine and Heart Failure

The two main indications for hydralazine are essential hypertension and the management of 

heart failure with a reduced ejection fraction (HFrEF), the latter in conjunction with 

isosorbide dinitrate (BiDil). BiDil has been shown to be highly effective in the treatment of 

HFrEF in the African American population (7). There are no direct studies comparing NAT2 

acetylator status with HFrEF outcomes. However, race may be a surrogate of reduced 

acetylator status. African Americans have a higher frequency of the NAT2*5 and 14 

genotypes, which may in part explain the efficacy of hydralazine in this population. The 

minor allele frequencies for NAT2*5 is 0.43 and NAT2*14 is 0.004 in the general 

population, but 0.67 and 0.08 respectively in individuals of African ancestry (Table 1) (69).

Collins et al. Page 7

Am J Nephrol. Author manuscript; available in PMC 2021 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hydralazine-Related Toxicities

The common side effects of hydralazine are primarily associated with the drug’s mechanism 

of action and efficacy (Table 2) (10, 63, 68, 70–72). As a potent arterial vasodilator, side 

effects such as headache, reflex tachycardia, and/or angina pectoris are commonly reported 

by patients who are exposed to hydralazine. In addition, systemic lupus erythematosus 

(SLE) is reported infrequently, but has potential serious and long-term consequences.

Patients with the NAT2 slow acetylator phenotype are exposed to an increased concentration 

of the parent compound, putting them at increased risk for adverse effects. For example, 

healthy volunteers who were phenotyped as slow acetylators and administered a single dose 

of 182 mg of hydralazine, experienced adverse effects ranging from mild headaches to 

fainting that required supplemental oxygen. Volunteers who were phenotyped as fast 

acetylators did not report any side effects. A lower dose of 83 mg/day administered to slow 

acetylator patients was well tolerated with no reported side effects or SLE after one year in 

the dose-adjusted group (10).

To reduce the risk of hydralazine adverse effects, it has been recommended to co-prescribe a 

β-blocker and/or diuretic to help with reflex tachycardia and fluid retention (73). However, 

patients optimized on this double or triple therapy still experienced side effects, including 

palpitations, among others. Patients who were phenotyped as slow acetylators (n=20) had 

higher incidence of adverse events compared to those who were phenotyped as fast 

acetylators (n=9) (40% vs 0%; p=0.028) (63).

Systemic Lupus Erythematosus (SLE)

Reports associating SLE with hydralazine emerged less than one year later after drug 

approval (12, 74). SLE is now included as a warning in the hydralazine drug label (4, 5). It 

has been hypothesized that patients with NAT2 slow acetylator phenotype have an increased 

risk of developing idiopathic SLE, even without a known aggravating agent such as 

hydralazine. However, this hypothesis has not been consistently supported. For example, a 

case-control study of 209 (194 women, 15 men) patients with SLE and 209 sex matched 

patients without SLE, documented a SLE prevalence of 59.8% among NAT2 slow 

acetylators and 56.5% among those without the NAT2 slow acetylator phenotype, (p=0.45), 

suggesting the NAT2 acetylator phenotype alone was not associated with idiopathic SLE 

(75). The lack of association has been further confirmed in multiple publications since then 

(41, 76, 77). Thus, the evidence does not support an increased risk of SLE in slow 

acetylators without exposure to an aggravating agent; however, these studies should not be 

conflated with studies of hydralazine-induced lupus.

In contrast, there is evidence that suggests greater hydralazine exposure increases the risk of 

drug-induced lupus (67, 68, 70–72). This increased exposure may be due to either higher 

doses of hydralazine or a slow acetylator status which increases circulating concentrations. 

First, hydralazine dose has been associated with the development of SLE in slow acetylators. 

A study of 281 patients who were followed over three years had no reports of SLE if the 

total daily hydralazine dose was 50 mg. However, when the dose was increased to 100 mg a 

day, SLE was reported in 5.4% of patients, and among patients exposed to 200 mg daily, 
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SLE was reported in 10.4% of patients. Among the patients who developed SLE (n=14; 10 

women, 4 men), eleven were slow acetylators, two had unknown phenotype, and one was a 

fast acetylator. Of note, four patients with the fast acetylator phenotype were exposed to 400 

mg a day, which is above the FDA recommended maximum dose of 300 mg, and SLE was 

not reported in any of them, further supporting the association of slow acetylator phenotype 

and risk of SLE (71).

Sex may also play a role in the incidence of SLE among those with slow acetylator 

phenotype, compared with fast acetylators. Among 26 patients who developed SLE after 

being exposed to hydralazine, 96% were phenotyped as slow acetylators (70). The SLE 

group was compared to sixteen slow acetylator patients who did not develop SLE while on 

hydralazine for one year to determine if sex, acetylator phenotype, and HLA-DR4 increased 

risk of developing SLE. Women developed SLE in 80% of cases compared to 31% in males 

(p<0.01). The five men who developed SLE were DR4+ and on 200 mg of hydralazine. 

Women developed SLE regardless of being DR4+ and dose (70). A case series of six 

patients who developed lupus nephritis after exposure to hydralazine supports the 

association of sex, SLE and NAT2 acetylator phenotype. All six patients were Caucasian 

females and phenotyped as slow acetylators. Hydralazine dose ranged from 50 mg to 300 

mg daily for a duration ranging from six months to seven years. In all patients, 

discontinuation of hydralazine and immunosuppressive therapy abated symptoms of lupus 

nephritis, as is expected in the setting of drug-induced SLE (72, 78).

In the Brazilian study of NAT2 genotype and blood pressure response discussed above, four 

out of 169 (2.4%) patients withdrew from the study due to adverse events. Of those, three 

were slow acetylators and one slow acetylator developed a lupus like syndrome (68). Based 

on the available literature, hydralazine exposure and NAT2 slow acetylator phenotype are 

potential risk factors for the development of adverse events, including drug-induced SLE. 

Female sex and HLA-DR4+ may further increase the risk for SLE. As a result, several 

societies have called to limit maximum hydralazine exposure (73). Since there are only a 

small number of total hydralazine-induced lupus cases reported, additional studies are 

warranted to confirm the association between NAT2 activity and hydralazine-induced lupus.

Hydralazine Dosing Recommendation

Recommendations for genotype-guided hydralazine therapy are included in Table 3. The 

allele frequency distribution of NAT2 in the general population yields an approximately 

50/50 split in slow acetylators versus intermediate or fast acetylators. As a result, there is no 

majority phenotype to serve as a benchmark in the general population. Thus, all individuals 

regardless of acetylation status could benefit from personalized prescribing of hydralazine to 

optimize dosing and therapy selection. Individuals with a fast acetylator phenotype are likely 

to benefit from a higher starting dose or faster titration of hydralazine as compared to slow 

acetylators. In the cited literature, the requisite dose increase in fast acetylators ranges from 

a 40% to 125% increase to match hydralazine concentrations in slow acetylators. Most 

studies suggest a 50–100% higher dose is appropriate in fast acetylators.

At present, intermediate acetylators are grouped with fast acetylators with regard to dosing 

recommendations. In over 4,000 individuals, the majority of phenotyping studies display a 
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bimodal distribution of NAT2 activity. A minority of phenotyping studies does reveal an 

intermediate phenotype and it is possible that a more consistent and clinically relevant 

intermediate phenotype would emerge with additional subjects who are carefully 

phenotyped for acetylator status and antihypertensive response (13, 14, 33).

Slow acetylators can similarly benefit from genotype-guided therapy by restricting the total 

daily dose to reduce the incidence of adverse events. As more evidence emerges, it may be 

necessary to restrict maximum doses even further in very slow acetylators with two *6 or *7 

alleles (26, 40, 48). At present, there is still limited, but consistent evidence linking 

hydralazine exposure to drug-induced SLE. Other predictors such as gender and HLA-DR4 

genotype are concomitant risk factors for SLE. While the FDA has approved total daily 

doses up to 300 mg/day, the American College of Cardiology (ACC) and American Heart 

Association (AHA) have suggested limiting total daily doses to 200 mg/day to reduce the 

risk of a lupus-like reaction (73). NAT2 genotype can reliably predict higher systemic 

concentrations and may allow clinicians to make informed decisions on whether to titrate 

hydralazine to doses above 200 mg/day. Slow acetylators could have their total dose limited 

to less than 200 mg/day or have an alternative vasodilatory drug prescribed. Fast and 

intermediate acetylators could be titrated to 300 mg/day in the setting of severe resistant 

hypertension. Regardless, clinicians should monitor for signs and symptoms of lupus in all 

of their patients treated with hydralazine.

Conclusion and Future Directions

In summary, we present evidence supporting several associations between NAT2 genotype 

and relevant hydralazine phenotypes. The strongest of these associations is between NAT2 

enzyme activity phenotype and NAT2 genotype. This link between phenotype and genotype 

is critical as a large portion of hydralazine studies were conducted in an era before the 

human genome was sequenced. We identified fourteen studies which support the association 

between either NAT2 phenotype or genotype with hydralazine concentration. Seven 

additional studies link NAT2 acetylator status to hydralazine efficacy. What is remarkable is 

the relative paucity of studies that present contradictory evidence. We identified three 

investigations in Table 2 that tested the association of NAT2 phenotype with hydralazine 

concentration or blood pressure which failed to reach statistical significance or achieve the 

expected outcome (52, 64, 67). Although these three studies were not significant, the 

expected direction of effect between acetylator status, concentration, or efficacy was 

maintained.

The association of NAT2 phenotype with hydralazine-induced lupus is less evident as few 

studies have been designed to assess adverse events. It is more apparent that SLE is not 

associated with NAT2 phenotype in the absence of hydralazine. Given the uncommon and 

multifactorial nature of drug-induced lupus, many studies will be underpowered to detect an 

effect. Additional risk factors like hydralazine dose, HLA-DR4 status, and gender also 

contribute to drug-induced lupus. Nonetheless, major societies (ACC/AHA) have 

recommended limiting hydralazine exposure to reduce the risk of drug-induced lupus (73, 

79). Thus, the stronger evidence that links NAT2 acetylator status to hydralazine 
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concentration provides indirect evidence that slow acetylators may benefit from lower total 

daily doses of hydralazine to reduce the risk of drug-induced lupus.

The National Human Genome Research Institute’s Implementing Genomics in Practice 

(IGNITE) consortium seeks to test the value of implementing genomic information into 

clinical care through pragmatic clinical trials. As part of an upcoming trial called the Genetic 

testing to Understand and Address Renal Disease Disparities in the US (GUARDD-US) 

study (NCT04191824), approximately 6,000 individuals will be genotyped for NAT2, 

including those with resistant hypertension prescribed hydralazine. This pragmatic study 

will help to understand the relationship between NAT2 genotype, blood pressure, and 

adverse events in a real-world setting.
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Fig. 1. Hydralazine Metabolism Pathway.
Hydralazine undergoes acetylation by NAT2 via two pathways. Direct acetylation by NAT2 

and cyclization to form MTP (3-methyl-1,2,4-triazolo-[3,4a] phtalazine) followed by 

oxidation to form 3OH-MTP (3-hydroxymethyl-1,2,4-triazolo-[3,4a] phtalazine), or 

oxidation to form HPZ (1-Hydrazinophthalazine) followed by acetylation to form NAc-HPZ, 

N-acetyl-hydrazine-phthalazinone. HPH, hydralazine pyruvic acid hydrazone, is the major 

metabolite found during circulation. Additional hydralazine metabolites not mentioned 

include phthalazinone, phthalazine, and 9-Hydroxy-3-methyltriazolophthalazine.
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Table 1.

NAT2 Allele Frequency and Predicted Function

NAT2* Allele Variant rs# Global MAF
a African Asian European Predicted Function

*4 none none Standard/Wild type

*5 341 T>C rs1801280 0.43 0.67 0.03 0.55 Reduced

*6 590 G>A rs1799930 0.29 0.25 0.25 0.29 Reduced

*7 857 G>A rs1799931 0.03 0.03 0.16 0.025 Reduced

*11 481 C>T rs1799929 0.42 0.27 0.03 0.43
Standard

b

*12 803 A>G rs1208 0.42 0.42 0.06 0.43
Standard

c

*13 282 C>T rs1041983 0.33 0.43 0.43 0.32
Standard

b

*14 191 G>A rs1801279 0.004 0.08 0 0.0004 Reduced

a
MAF: minor allele frequency.

b
rs1799929 and rs1041983 are synonymous mutations without an amino acid substitution and are considered standard functioning alleles.

c
rs1208 is a missense mutation conferring an amino acid substitution of Lysine (K) to Arginine (R). It is presently considered a standard 

functioning allele.
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Table 3.

Hydralazine Dosing Recommendations for the Indication of Resistant Hypertension

NAT2 Status Recommendation

Intermediate
a
 or Fast

b 

Acetylator

Predicted to have reduced hydralazine efficacy; consider a 50–100% higher starting dose of hydralazine 
for patients with resistant hypertension. Limit total daily hydralazine dose to 300 mg daily.

Slow Acetylator
c Predicated to have increased hydralazine levels, which may lead to increased efficacy and/or adverse 

effects. Use caution with total daily hydralazine doses of 200 mg or more.

a
Intermediate acetylators have one copy of a reduced functioning allele.

b
Fast acetylators have no copies of a reduced functioning allele.

c
Slow acetylators have two copies of a reduced functioning allele.
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