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Abstract

Hypertension is the most common chronic condition seen by physicians in ambulatory care and a 

condition for which life-long medications are commonly prescribed. There is evidence for genetic 

factors influencing blood pressure variation in populations and response to medications. This 

review summarizes recent genetic discoveries that surround blood pressure, hypertension, and 

antihypertensive drug response from genome-wide association studies, while highlighting 

ancestry-specific findings and any potential implication for drug therapy targets. Genome-wide 

association studies have identified several novel loci for inter-individual variation of blood 

pressure and hypertension risk in the general population. Evidence from pharmacogenetic studies 

suggests that genes influence the blood pressure response to antihypertensive drugs, although 

results are somewhat inconsistent across studies. There is still much work that remains to be done 

to identify genes both for efficacy and adverse events of antihypertensive medications.
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Introduction

Hypertension is the most common chronic condition seen by physicians in ambulatory care 

[1] and a condition for which life-long medications are commonly prescribed. In the USA, 

hypertension affects one-third of the adult population, has increased among children and 

adolescents, affecting disproportionally some ethnic/racial subgroups [2, 3]. From the 

clinical and public health perspective, the major long-term impact of hypertension is 

resultant end-organ damage to the kidneys, heart, vessels, and brain, leading to premature 

mortality, disability, and significantly increased economic and societal cost [4–6]. Evidence 

from clinical trials has shown that lowering blood pressure reduces the risk of stroke, 

coronary heart disease, and mortality [7–12], in addition to slowing the progression of 

chronic kidney disease [13]. African Americans are a subgroup who suffer a greater burden 

of hypertension and its complications, and are more likely to have uncontrolled hypertension 

[14] and to require multiple drugs for blood pressure (BP) control compared with other US 

racial/ethnic subgroups [15]. Genetic factors also contribute to hypertension and may 

interact with environmental exposures (including pharmacological agents) and social-

lifestyle habits in contributing to disparities in hypertension prevalence and severity 

observed across diverse race/ethnic subgroups.

This review summarizes recent genetic discoveries that surround BP, hypertension, and 

antihypertensive drug response from studies of the general population and those from 

pharmacogenomic settings, while highlighting ancestry-specific findings and any potential 

implication for drug therapy targets. We focused on discovery efforts seeking (1) loci 

contributing to the inter-individual variation in BP and hypertension risk using large-scale 

genetic approaches, including genome-wide association studies (GWAS), applied to cohorts 

of individuals recruited from the general population, and (2) loci identified through GWAS 

of pharmacologic traits, including those related to clinical response to antihypertensive 

medications. The first approach is an unbiased scan of the entire genome aiming to provide 

insights into the genes contributing to the biology of BP regulation, to suggest targets for 

therapy and for population-level risk reduction. The second approach focuses specifically on 

identifying genetic variants influencing drug response, including drugs used for the 

treatment of hypertension, and/or genetic variants associated with side effects of drugs. 

Pharmacogenetics holds the promise of providing individualized clinical care, by identifying 

subgroups based on their response to commonly used drugs for hypertension and/or 

subgroups at higher risk for harmful side-effects of drugs and thus tailoring therapy to an 

individual’s genetic makeup. Although both approaches have already identified numerous 

genes related to BP, hypertension, and antihypertensive drug response, the functional 

variants underlying most associations remain largely unknown and much work is still needed 

to translate the findings to the clinical care of patients.
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Blood Pressure Loci Identified in Studies of the General Population

Common Variants Identified in GWAS and Admixture Models

The heritability of BP is substantial (in the range of 30–55 %), suggesting a large number of 

contributing genetic variants, the vast majority of which are yet to be discovered [16•, 17]. 

Genetic analysis of Mendelian, i.e., extreme forms of hypertension and hypotension, has 

highlighted some pathways of BP regulation in humans and these findings comprise rare 

genetic variants with large impact in BP [17, 18]. However, identifying genes related to 

common variation in BP and essential hypertension has proven challenging. Hypertension—

and its response to treatment—is a complex trait that is likely influenced by a large number 

of genetic variants, each with small effects, and possibly modulated by environmental 

factors including diet, lifestyle, and other exposures. Recent genetic discovery efforts for this 

class of genetic variation have focused on unbiased scans of the genome for associations 

with BP traits using data from individuals recruited from the general population, a 

proportion of them having essential hypertension. This GWAS approach examines the 

association of hundreds of thousands of genetic markers commonly seen in the population 

(single-nucleotide polymorphisms, SNPs), and relies on stringent statistical criteria for 

discovery of loci in order to account for multiple testing (typically p<5 × 10−8). Validation 

of genomic regions is further provided by replication of the associations in additional 

samples. Because genetic variants vary in allele frequency across race/ethnicity and the 

patterns of correlation among genetic markers also vary by ancestry and admixture, studies 

are performed within each ancestrally homogenous group separately.

The first two BP GWAS [19, 20] discovered 13 BP loci and were followed by a combined 

effort from the International Consortia of Blood Pressure (ICBP) [16•] reporting additional 

associations for a total of 28 loci for systolic and diastolic BP and/or hypertension. 

Subsequent studies reported over 55 loci for BP in GWAS of pulse pressure and mean 

arterial pressure [21], GWAS using extremes of the BP distribution or hypertension [22, 23], 

and in studies using gene-centric arrays, which provide a better genomic coverage for some 

loci [24–26]. The identified genetic variants from GWAS have small effects and explained 

only a small proportion of the trait variation. For example, 29 SNPs in the 28 loci identified 

in ICBP explained less than 1 % of the inter-individual variation in BP [16•]. However, 

findings from GWAS have already uncovered some biology and potential targets for drug 

therapy (discussed under “Genes, Pathways, and Potential Role for Pharmacogenetics”).

The ICBP and several other recently published studies have studied mostly individuals of 

European ancestry [16•, 19, 20, 22–25, 27]. Studies of non-European ancestry including 

East Asians [28•, 29] and African ancestry [30, 31•] have contributed additional information 

to the genetic architecture of BP, though their sample sizes are limited. For example, a 

GWAS of BP in East Asians identified four novel BP loci, and evidence for an ethnic-

specific variant at ALDH2 (aldehyde dehydrogenase 2). The ALDH2 variant was highly 

correlated with a known functional variant (rs671), which was previously associated with 

hypertension modulated by alcohol intake in East Asians [28•].

Individuals of African ancestry have more genomic diversity and less linkage disequilibrium 

(correlations among SNPs) compared with European and Asian populations [32]. These 
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genomic differences can be helpful in gene discovery and also in narrowing genomic regions 

within identified loci to identify functional variants for BP. Using admixture mapping 

approaches followed by association analyses, Zhu et al. [30] Identified the NPR3 (natriuretic 

peptide receptor 3) locus for systolic and diastolic BP in African Americans, subsequently 

shown to be associated with BP traits in individuals of European ancestry [16•] and East 

Asians [28•]. In a recent meta-analysis of 19 GWAS of African ancestry participants of the 

Continental Origins and Genetic Epidemiology Network Blood Pressure (COGENT-BP) 

consortium, three novel loci for BP (EVX1-HOXA, RSPO3, PLEKHG1) [31•] were 

identified, although the discovery sample (including 29,000 individuals) was half of the 

ICBP sample, thus highlighting the potential for differences according to ancestry. RSPO3 
(R-spondin 3)-encoded protein activates the Wnt/beta-catenin signaling pathways, and the 

locus has been previously associated with blood urea nitrogen levels, a measure of kidney 

function [33]. There was also evidence for an additional novel variant at the previously 

reported locus SOX6. Of interest, genetic loci identified in individuals of African ancestry 

replicated across European and East Asian individuals in a trans-ethnic meta-analysis. 

Therefore, studies of non-European ancestry are essential for trans-ethnic gene discovery, as 

common genetic variants may have broad effects across ancestries in the population.

Rare Variants Influencing BP Traits

In addition to common genetic variants, recent studies have shown that low frequency 

variants (minor allele frequency between 0.5 and 5 %) [34] can have large effects and may 

explain some of the missing heritability of complex traits [35]. Importantly, rare variants 

constitute the vast majority of polymorphic sites in human populations [34]. Low-frequency 

and population-specific variants are not well captured by current GWAS genotyping 

platforms, particularly among non-European ancestry populations. Studies of low frequency 

variants using sequencing data and 1000 Genomes Project imputed data are ongoing, and 

examples of loci associations with BP traits have not yet been published. However, a 

candidate gene sequencing study identified rare variants in kidney solute transporters, all of 

which are targets for diuretics, which were associated with low BP in the Framingham Heart 

Study [36]. These included variants in the SLC12A3 (thiazide-sensitive Na-Cl cotransporter, 

the target of thiazide diuretics), SLC12A1 (Na-K-Cl cotransporter NKCC2, the target of 

loop diuretics furosemide and bumetanide) and KCNJ1 (K+ channel ROMK) genes [36]. 

Because rare variants tend to be population-specific [37], future studies may provide 

evidence for ancestry-specific variants at low frequency influencing the genetic architecture 

of BP traits.

Genes, Pathways, and Potential Role for Pharmacogenetics

Most genomic regions identified in BP GWAS include genes of unknown function, but some 

loci include genes known or suspected to be involved in BP pathways and/or are targets of 

antihypertensive drugs (Table 1). The CYP17A1 (cytochrome P450 enzyme) protein is a key 

enzyme in the steroidogenic pathway that produces mineralocorticoids and glucocorticoids, 

and rare Mendelian mutations manifest by congenital adrenal hyperplasia and hypokalemic 

hypertension [38]. This locus has been identified in GWAS of both European and East Asian 

individuals [16•, 28•]. The ADM (adrenomedullin) protein is a hypotensive peptide found in 
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human pheochromocytoma [39], a disease manifested by paroxysmal hypertension and a 

cause of secondary hypertension [40]. ADRB1 encodes the β-1 adrenergic receptor, a 

guanine nucleotide-binding regulatory protein-coupled receptor target of β-adrenergic 

receptor blockers. SNPs nearby or within the gene have been associated with mean arterial 

pressure in GWAS [21] and a lower risk of essential hypertension [41]. Vasoactive peptides 

including natriuretic peptides and endothelin have a well-known role in BP control. Several 

genes in these pathways have been identified in GWAS of BP including NPPA/NPPB 
(precursors of atrial- and B-type natriuretic peptides), NPR3 (natriuretic peptide clearance 

receptor), and EDN3 (endothelin 3). Soluble guanylyl cyclase, the product of the 

GUCY1A3-GUCY1B3 genes, generates cyclic guanosine monophosphate (cGMP) under 

stimulation by nitric oxide, inducing vasodilation. NOS3 encodes nitric oxide synthase 3, 

which is responsible for the conversion of l-arginine to the vasodilator nitric oxide. Several 

calcium and potassium channel genes have been identified in GWAS of BP traits including 

ATP2B1, CACNB2 and KCNJ11, and their pharmacologic targets are shown in Table 1. 

Genes related to the rennin-angiotensin-aldosterone system identified in BP GWAS are 

ENPEP, which encodes a glytamyl aminopeptidase involved in the conversion of angiotensin 

II to angiotensin III, and AGT, which encodes angiotensinogen precursor, the target of renin 

conversion to angiotensin I. FURIN encodes a protease involved in the processing of protein 

precursors including the prorenin receptor. Except for AGT, the effect of polymorphisms in 

these genes in response to therapy has not been studied. AGT variants have been also shown 

to interact with a low-salt diet [42, 43].

Kidney Genes, BP and Hypertension

The role of the kidneys on BP homeostasis is well-defined through mechanisms related to 

salt reabsorption and volume control. BP GWAS identified two kidney solute transporters, 

SLC4A7 (electro-neutral sodium bicarbonate co-transporter) and SLC39A8 (solute carrier 

family 39 [zinc transporter], member 8), but their role in BP regulation remains unknown 

[16•]. SLC39A8 is the major transporter of cadmium into cells in humans, an environmental 

metal pollutant that has been associated with endothelial dysfunction, oxidative stress, and 

hypertension in populations [44–47].

UMOD (uromodulin) is highly expressed in the kidney’s thick ascending limb and encodes 

the Tamm-Horsfall protein, the most abundant protein excreted in normal urine. In GWAS, 

variants in the promoter of UMOD (rs4293393, rs13333226) associated with lower BP and 

with a better kidney function [23, 48]. Transgenic mice with overexpression of uromodulin 

manifest salt-sensitive hypertension, aging-related kidney pathology, and activation of the 

thick ascending limb sodium cotransporter NKCC2, the target of loop diuretics [49]. 

Hypertensive individuals homozygous for UMOD at risk variant rs4293393 demonstrated a 

lowering of BP salt sensitivity response when treated with furosemide compared to other 

hypertensive individuals [49]. rs4293393 is common in all ethnic groups represented in 

HapMap and the 1000 Genomes Project, suggesting a potential role in hypertension across 

diverse ancestry groups.

Chronic kidney disease is usually accompanied by hypertension. A gene known to cause 

chronic kidney disease and secondary hypertension is APOL1 (apolipoprotein L, 1), recently 
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reviewed in this journal [50]. Two APOL1 alleles, under positive selection in populations of 

African ancestry, confer substantial risk of focal segmental glomerulosclerosis, HIV-

associated nephropathy and hypertensive-attributed nephropathy [51–53]. This is also an 

example of ancestry-specific variants common in the population that present risk for 

hypertension.

GWAS Findings and Drug Repositioning

Sauseau et al. recently examined the utility of GWAS data in identifying drug targets or 

alternative clinical indications for existing drugs [54]. Using a set of 991 GWAS genes 

identified from publications listed in the genome catalog up to 2011, they found that 21 % of 

the genes were amenable to pharmacological modulation using small molecules and 47 % 

using biopharmaceuticals, which was a significantly higher frequency than those derived 

from the whole genome. In addition, by combining their gene list with a list obtained from 

the Pharmaprojects database (www.pharmaprojects.com), 155 genes were identified that 

were already targets or in development for a clinical disease. By matching drugs and clinical 

GWAS traits, the authors were able to identify potential novel indications for existing drugs 

or drugs in development. These data suggest that GWAS findings are enriched for “drug-

able” genes in humans, even though the functional variants may not yet have been identified.

GWAS and Hypertension Drug Targets

Johnson et al. studied the association of gene targets of alpha blockers, angiotensin-

converting enzyme inhibitors, beta blockers, angiotensin receptor blockers, calcium channel 

blockers, diuretics, and vasodilators, identified in the DrugBank (www.drugbank.ca), with 

BP and hypertension using GWAS [27]. Genetic variants within 60 kb of 30 drug target 

genes were selected and tested for associations with BP and hypertension traits in the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium (n 

= 29,136). Replication was performed in over 57,000 European ancestry individuals. The 

study found associations of a nonsynonymous variant in the ADRB1 gene with systolic and 

diastolic BP, and hypertension, and a variant in AGT was associated with systolic BP and 

hypertension [27].

Loci Identified in Pharmacogenetic Studies

Pharmacologic exposures can modify the effects of genes influencing BP and contribute to 

antihypertensive response and overall cardiovascular risk. Genetic factors can influence the 

response to pharmacologic agents and/or can guide treatment strategies such as avoiding 

side-effects and other harmful complications. Despite the promise of pharmacogenomics in 

the treatment of hypertensive patients, their use is still limited in clinical care. Given the 

complex regulatory mechanisms for BP, alternative strategies for the investigation of BP 

genes may prove informative for gene finding, for example, BP responses to pharmacologic 

interventions [55]. Recent GWAS for antihypertensive pharmacogenetics have identified 

NEDD4L (neural precursor cell expressed, developmentally downregulated 4-like) variants 

that are associated with antihypertensive response to diuretics [56–58, 66], as well as 

PRKCA variants influencing BP response to thiazide diuretics [59•] (discussed below).
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The pharmacogenetics of antihypertensive treatment has been recently summarized [60, 61]. 

Evidence from studies suggests that genetics influence the BP response to antihypertensive 

drugs, although results are somewhat inconsistent across studies. Comparison of findings 

across studies is complicated by differences in study design, methods for assessing BP, 

pharmacologic exposures (including dose and duration), and small sample size. 

Pharmacogenetic studies of BP response and antihypertensive drug side effects can be found 

in the International Consortium for Antihypertensive Pharmacogenetic Studies (ICAPS) at 

www.pharmgkb.org/page/icaps. These studies include observational studies and clinical 

trials of antihypertensive drugs, and used candidate gene and GWAS genetic approaches. 

Below, we focus on findings from GWAS.

GWAS Studies of BP Drug Response

Two GWAS of BP drug response were recently published [59•, 62•]. These studies used data 

from randomized clinical trials. Gong et al. studied the association of SNPs in 37 BP GWAS 

loci (Illumina 50 K cardiovascular or Omni 1 M GWAS arrays) with response to atenolol 

and thiazide diuretics in 461 European and 298 African-ancestry hypertensive participants of 

the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study, a 

multicenter, randomized clinical trial of hydrochlorothiazide (HCTZ) versus atenolol [62•]. 

Although there was no genome-wide significant finding when corrected for multiple testing, 

a genetic risk score based on nominally significant associations in the array-wide analysis 

was significantly associated with response to atenolol and thiazides in individuals of 

European ancestry. Turner et al. studied the association of common variants influencing 

antihypertensive response to HCTZ in 424 hypertensive European Americans from the 

PEAR study and the Genetic Epidemiology of Responses to Antihypertensive (GERA) study 

[59•]. Among ∼1.1 million genetic markers tested, an SNP in PRKCA (rs16960228) was 

associated with greater systolic and diastolic BP response among carriers of the allele A, 

reaching genome-wide significance in a combined metaanalysis of discovery and additional 

replication samples. An SNP nearby GNAS-EDN3 (rs2273359), although replicated in 

independent samples, did not reach the genome-wide threshold for significance for BP 

response to HCTZ.

He et al. performed a GWAS of BP in response to dietary intervention and cold pressor test 

in 1,881 Han Chinese participants from the GenSalt study [63]. The GenSalt study included 

a 7-day low-sodium (51.3 mmol/d), a 7-day high-sodium (307.8 mmol/d), and a 7-day high-

sodium plus potassium supplementation (60 mmol/d) diet intervention in addition to BP cold 

pressor test response. They identified eight novel loci that were associated with one or more 

traits and replicated in an additional sample of 698 Han Chinese individuals. These included 

SNPs in or near PRMT6, CDCA7, and PIBF1, which were associated with response to low-

salt diet; IRAK1BP1 associated with high-sodium intervention; CDCA7, ARL4C, 

IRAK1BP1, and SALL1, associated with potassium supplementation; and TRPM8 and 

FBXL13 associated with cold pressor test response. In five of these loci, the SNPs were low-

frequency markers (MAF 0.01 to 0.05). The effect sizes were higher than the ones seen in 

GWAS of BP, suggesting stronger genetic effects to response to interventions. Finally, there 

was a strong dose–response relationship between the cumulative allele count and the 

development of hypertension at follow-up.
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GWAS Studies of Adverse Response to Antihypertensive Drugs

GWAS studies of adverse response to antihypertensive drugs have also been recently 

published. Del-Aguilla et al. studied the association of genetic markers with change in 

fasting plasma glucose and triglycerides in response to HCTZ using data from the PEAR 

and GERA studies [64]. They identified two genome-wide significant variants (rs12279250 

and rs4319515) in the NELL1 gene associated with increased fasting triglycerides in African 

Americans. Each at-risk variant allele was associated with a large effect of approximately 28 

mg/dl increase in plasma triglyceride levels. Using 33 SNPs previously associated with 

fasting glucose in white individuals, Gong et al. studied their association with drug-induced 

glucose changes in the PEAR study [65]. An SNP in the 5’ of the PROX1 gene (rs340874) 

was significantly associated with atenolol-induced glucose change, with a 2.39 mg/dl 

increase in serum glucose per each copy of the C-allele. A GWAS of atenolol-induced HDL-

C changes in the PEAR study was not significant [66], although 13 regions showed 

consistent associations among whites and African Americans. These included seven loci 

previously related to lipid pathways or metabolic traits including GALNT2, FTO, ABCB1, 

LRP5, STARD3NL, ESR1, and LIPC. A study of angiotensin-converting enzyme inhibitor-

associated angioedema (175 cases and 489 controls) failed to identify genome-wide 

significant SNPs associated with this complication [67]. In the INternational VErapamil SR 

Trandolapril Study (INVEST), a prospective, randomized study comparing two 

pharmacotherapy strategies to control hypertension in ambulatory patients with coronary 

artery disease, TCF7L2 polymorphisms were associated with HCTZ-induced diabetes [68].

Taken together, although GWAS published studies are still limited, their findings suggest 

genetic effects for common variants in drug-induced side-effects. Nonetheless, GWAS 

discovery studies of BP drug response are limited by small sample size and are likely too 

underpowered to identify novel loci.

Ancestry and Choice of Hypertension Medications

A recent report from the authors originally convened as the 8th Joint National Committee 

[69] recommends different first-line for antihypertensive drugs in African-American 

compared to non-African-American hypertensive individuals (a calcium channel blocker or 

thiazide-type diuretics). Based on evidence from the Antihypertensive and Lipid-Lowering 

Treatment to Prevent Heart Attack Trial (ALLHAT) clinical trials [70], in which black 

individuals taking a thiazide diuretic showed better stroke, heart failure, and combined 

cardiovascular outcomes compared to those taking an ACE inhibitor. For the non-African-

American population, the new report recommends an angiotensin-converting enzyme 

inhibitor, angiotensin receptor blocker, a calcium channel blocker or thiazide-type diuretic as 

first-line therapy. African Americans have greater increases in BP in response to sodium 

intake, i.e., salt sensitivity [71, 72]. A recent study by Tu et al. showed that increases in BP 

in African-American children and adults were associated with increased plasma aldosterone 

concentration and reduction in plasma renin activity [73]. This relationship was not seen in 

white individuals. African-American individuals also had higher BP response to an 

intervention using the synthetic mineralocorticoid 9-α-fludrocortisone, suggesting 

aldosterone sensitivity as a mechanism of hypertension [73]. It is likely that there is an 
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underlying genetic component that explains the racial/ethnic differences in response to 

therapy seen in clinical trials, although findings are yet to be published.

Future Research and Clinical Perspectives

While some progress has occurred recently in the search for genes contributing to the 

response to antihypertensive therapy, both in terms of efficacy and adverse events, there is 

much work that remains to be done. A challenge for researchers in the field is replication of 

significant findings in a different study population. Not only are trials expensive to conduct, 

there are few antihypertensive trials that are active and collecting DNA. Another challenge is 

the need to replicate findings with the same drug or even the same drug class. The recent 

formation of the ICAPS (International Consortium for Antihypertensive Pharmacogenetic 

Studies) is a step forward towards replication. A second major challenge is the lack of trans-

ethnic GWAS to identify common targets across ancestries. Finally, there is currently an 

absence of validated genome-based measures with sufficient clinical utility to be 

implemented in clinical practice.

Conclusions

GWAS have identified over 55 loci associated with blood pressure and hypertension traits. 

These loci harbor genes that are either established or potential targets for antihypertensive 

drugs. Studies of non-European ancestry are important to leverage trans-ethnic gene 

discovery, and to narrow down genomic regions where putative genetic variants (common or 

rare) are located. Although there is evidence for genes influencing the blood pressure 

response to antihypertensive drugs, few pharmacogenetic GWAS of antihypertensive drugs 

have been reported. Challenges for these studies are their small sample sizes, the lack of 

ancestry diversity, and difficulties in finding replication samples.
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Table 1

Loci with genes in known blood pressure pathways identified in genome-wide association studies in the 

general population and their pharmacologic targets

Loci with genes related to BP pathways Pharmacologic targets

Neuroendocrine system

    CYP17A1(cytochrome P450 enzyme)

    ADM (adrenomedullin)

    ADRB1 (adrenoceptor beta 1) [21] Primary target for β-adrenergic receptor blockers

Vasoactive peptides

    NPPA/NPPB (precursors of atrial- and B-type natriuretic peptides)

    NPR3 (natriuretic peptide receptor 3)

    EDN3 (endothelin 3)

Nitric oxide pathways

    GUCY1A3-GUCY1B3 (alpha and beta subunits of soluble
guanylate cyclase)

Isosorbide dinitrate is a nitric oxide donor and hydralazine prevents 
nitric oxide
degradation

    NOS3 (nitric oxide synthase 3 (endothelial cell))

Calcium and potassium channels

    ATP2B1 (ATPase, Ca++ transporting, plasma membrane 1)

    CACNB2 (calcium channel, voltage-dependent, beta 2 subunit) Controls the cell surface expression of the α1c subunit to which 
calcium channel
blockers bind

    KCNJ11 (potassium inwardly-rectifying channel, subfamily J,

member 11) [24]

Target of verapamil and glyburide

Renin-angiotensin system

    ENPEP (glutamyl aminopeptidase) [28•]

    AGT (angiotensinogen)

    FURIN (furin (paired basic amino acid cleaving enzyme)

Wnt/beta-catenin signaling pathways

    RSPO3 (R-spondin 3) [31 •]

Kidney solute transport

    SLC4A7 (electro-neutral sodium bicarbonate co-transporter)

    SLC39A8 (solute carrier family 39 [zinc transporter], member 8)

Kidney structure or proteins

    UMOD (uromodulin) Potential target of furosemide (see text)

    PLCE1 (phospholipase C, epsilon 1)

Unknown pathways

    RELA (v-rel avian reticuloendotheliosis viral oncogene homolog

A) [24]

Antihypertensive olmesartan and disulfiram
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