849 research outputs found

    Morphologies of Galaxies in and around a Protocluster at z=2.300

    Get PDF
    We present results from the first robust investigation of galaxy morphology as a function of environment at z>1.5. Our study is motivated by the fact that star-forming galaxies contained within a protocluster at z=2.3 in the HS1700+64 field have significantly older ages and larger stellar masses on average than those at similar redshifts but more typical environmental densities. In the analysis of HST/ACS images, we apply non-parametric statistics to characterize the rest-frame UV morphologies of a sample of 85 UV-selected star-forming galaxies at z=1.7-2.9, 22 of which are contained in the protocluster. The remaining 63 control-sample galaxies are not in the protocluster but have a similar mean redshift of ~2.3. We find no environmental dependence for the distributions of morphological properties. Combining the measured morphologies with the results of population synthesis modeling, we find only weak correlations, if any, between morphological and stellar population properties such as stellar mass, age, extinction and star-formation rate. Given the incomplete census of the protocluster galaxy population, and the lack of correlation between rest-frame UV morphology and star-formation history at z~2 within our sample, the absence of environmental trends in the distribution of morphological properties is not surprising. Additionally, using a larger sample of photometric candidates, we compare morphological distributions for 282 UV-selected and 43 near-IR-selected galaxies. While the difference in the degree of nebulosity between the two samples appears to be a byproduct of the fainter average rest-frame UV surface brightness of the near-IR-selected galaxies, we find that, among the lowest surface brightness galaxies, the near-IR-selected objects have significantly smaller angular sizes (abridged).Comment: 25 pages including 16 figures. Accepted for publication in ApJ. Version with full resolution figures available at http://www.astro.princeton.edu/~apeter/LBG/papers/peter2007_fullres.ps.g

    Granzyme K Activates Protease-Activated Receptor-1

    Get PDF
    Granzyme K (GrK) is a trypsin-like serine protease that is elevated in patients with sepsis and acute lung inflammation. While GrK was originally believed to function exclusively as a pro-apoptotic protease, recent studies now suggest that GrK may possess other non-cytotoxic functions. In the context of acute lung inflammation, we hypothesized that GrK induces pro-inflammatory cytokine release through the activation of protease-activated receptors. The direct effect of extracellular GrK on PAR activation, intracellular signaling and cytokine was assessed using cultured human lung fibroblasts. Extracellular GrK induced secretion of IL-6, IL-8 and MCP-1 in a dose- and time-dependent manner in lung fibroblasts. Heat-inactivated GrK did not induce cytokine release indicating that protease activity is required. Furthermore, GrK induced activation of both the ERK1/2 and p38 MAP kinase signaling pathways, and significantly increased fibroblast proliferation. Inhibition of ERK1/2 abrogated the GrK-mediated cytokine release. Through the use of PAR-1 and PAR-2 neutralizing antibodies, it was determined that PAR-1 is essential for GrK-induced IL-6, IL-8 and MCP-1 release. In summary, extracellular GrK is capable of activating PAR-1 and inducing fibroblast cytokine secretion and proliferation

    Transmission of Human and Macaque Plasmodium spp. to Ex-Captive Orangutans in Kalimantan, Indonesia

    Get PDF
    We identified 4 discrete Plasmodium spp. sequences from the blood of orangutans, including 1 of P. vivax, which has implications for human residents and orangutan rehabilitation programs

    Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection

    Get PDF
    Migration of dendritic cells (DCs) to the draining lymph node (DLN) is required for the activation of naive T cells. We show here that migration of DCs from the lung to the DLN after Mycobacterium tuberculosis (Mtb) exposure is defective in mice lacking interleukin (IL)-12p40. This defect compromises the ability of IL-12p40–deficient DCs to activate naive T cells in vivo; however, DCs that express IL-12p40 alone can activate naive T cells. Treatment of IL-12p40–deficient DCs with IL-12p40 homodimer (IL-12(p40)2) restores Mtb-induced DC migration and the ability of IL-12p40–deficient DCs to activate naive T cells. These data define a novel and fundamental role for IL-12p40 in the pathogen-induced activation of pulmonary DCs

    Early postnatal ozone exposure alters rat nodose and jugular sensory neuron development

    Get PDF
    Sensory neurons originating in nodose and jugular ganglia that innervate airway epithelium (airway neurons) play a role in inflammation observed following exposure to inhaled environmental irritants such as ozone (O3). Airway neurons can mediate airway inflammation through the release of the neuropeptide substance P (SP). While susceptibility to airway irritants is increased in early life, the developmental dynamics of afferent airway neurons are not well characterized. The hypothesis of this study was that airway neuron number might increase with increasing age, and that an acute, early postnatal O3 exposure might increase both the number of sensory airway neurons as well as the number SP-containing airway neurons. Studies using Fischer 344 rat pups were conducted to determine if age or acute O3 exposure might alter airway neuron number. Airway neurons in nodose and jugular ganglia were retrogradely labeled, removed, dissociated, and counted by means of a novel technique employing flow cytometry. In Study 1, neuron counts were conducted on postnatal days (PD) 6, 10, 15, 21, and 28. Numbers of total and airway neurons increased significantly between PD6 and PD10, then generally stabilized. In Study 2, animals were exposed to O3 (2 ppm) or filtered air (FA) on PD5 and neurons were counted on PD10, 15, 21, and 28. O3-exposed animals displayed significantly less total neurons on PD21 than FA controls. This study shows that age-related changes in neuron number occur, and that an acute, early postnatal O3 exposure significantly alters sensory neuron development

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Clinical and cost-effectiveness of a personalised health promotion intervention enabling independence in older people with mild frailty (‘HomeHealth’) compared to treatment as usual: study protocol for a randomised controlled trial

    Get PDF
    Background: Frailty is clinically associated with multiple adverse outcomes, including reduced quality of life and functioning, falls, hospitalisations, moves to long-term care and mortality. Health services commonly focus on the frailest, with highest levels of need. However, evidence suggests that frailty is likely to be more reversible in people who are less frail. Evidence is emerging on what interventions may help prevent or reduce frailty, such as resistance exercises and multi-component interventions, but few interventions are based on behaviour change theory. There is little evidence of cost-effectiveness. Previously, we co-designed a new behaviour change health promotion intervention (“HomeHealth”) to support people with mild frailty. HomeHealth is delivered by trained voluntary sector support workers over six months who support older people to work on self-identified goals to maintain their independence, such as strength and balance exercises, nutrition, mood and enhancing social engagement. The service was well received in our feasibility randomised controlled trial and showed promising effects upon outcomes. Aim: To test the clinical and cost-effectiveness of the HomeHealth intervention on maintaining independence in older people with mild frailty in comparison to treatment as usual (TAU).Methods: Single-blind individually randomised controlled trial comparing the HomeHealth intervention to TAU. We will recruit 386 participants from general practices and the community across three English regions. Participants are included if they are community-dwelling, aged 65+, with mild frailty according to the Clinical Frailty Scale. Participants will be randomised 1:1 to receive HomeHealth or TAU for 6 months. The primary outcome is independence in activities of daily living (modified Barthel Index) at 12 months. Secondary outcomes include instrumental activities of daily living, quality of life, frailty, wellbeing, psychological distress, loneliness, cognition, capability, falls, carer burden, service use, costs and mortality. Outcomes will be analysed using linear mixed models, controlling for baseline Barthel score and site. A health economic analysis and embedded mixed-methods process evaluation will be conducted. Discussion: This trial will provide definitive evidence on the effectiveness and cost-effectiveness of a home-based, individualised intervention to maintain independence in older people with mild frailty in comparison to TAU, that could be implemented at scale if effective

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore