406 research outputs found
Associated Fungal Infections, Related to the Global Covid-19 Pandemic (Literature Review)
The 2019 coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has swept the globe. Based on a retrospective analysis of SARS and influenza data from China and around the world, we suggest that fungal co-infections associated with global COVID-19 may be missed or misdiagnosed. Although there are few publications, patients with COVID-19, especially severely ill or immunocompromised patients, are more likely to develop invasive mycoses. Aspergillus and Candida infections in patients with COVID-19 will require early detection by comprehensive diagnostic intervention (histopathology, direct microscopy, culture, (Arabian: 2004, Tilavberdiev: 2016) -β-D-glucan, galactomannan, and PCR assays) to ensure effective treatment. We consider it appropriate to assess risk factors, types of invasive mycoses, strengths and weaknesses of diagnostic methods, clinical conditions, and the need for standard or individual treatment
Transcriptional Priming of Salmonella Pathogenicity Island-2 Precedes Cellular Invasion
Invasive salmonellosis caused by Salmonella enterica involves an enteric stage of infection where the bacteria colonize mucosal epithelial cells, followed by systemic infection with intracellular replication in immune cells. The type III secretion system encoded in Salmonella Pathogenicity Island (SPI)-2 is essential for intracellular replication and the regulators governing high-level expression of SPI-2 genes within the macrophage phagosome and in inducing media thought to mimic this environment have been well characterized. However, low-level expression of SPI-2 genes is detectable in media thought to mimic the extracellular environment suggesting that additional regulatory pathways are involved in SPI-2 gene expression prior to cellular invasion. The regulators involved in this activity are not known and the extracellular transcriptional activity of the entire SPI-2 island in vivo has not been studied. We show that low-level, SsrB-independent promoter activity for the ssrA-ssrB two-component regulatory system and the ssaG structural operon encoded in SPI-2 is dependent on transcriptional input by OmpR and Fis under non-inducing conditions. Monitoring the activity of all SPI-2 promoters in real-time following oral infection of mice revealed invasion-independent transcriptional activity of the SPI2 T3SS in the lumen of the gut, which we suggest is a priming activity with functional relevance for the subsequent intracellular host-pathogen interaction
GogB Is an Anti-Inflammatory Effector that Limits Tissue Damage during Salmonella Infection through Interaction with Human FBXO22 and Skp1
Bacterial pathogens often manipulate host immune pathways to establish acute and chronic infection. Many Gram-negative bacteria do this by secreting effector proteins through a type III secretion system that alter the host response to the pathogen. In this study, we determined that the phage-encoded GogB effector protein in Salmonella targets the host SCF E3 type ubiquitin ligase through an interaction with Skp1 and the human F-box only 22 (FBXO22) protein. Domain mapping and functional knockdown studies indicated that GogB-containing bacteria inhibited IκB degradation and NFκB activation in macrophages, which required Skp1 and a eukaryotic-like F-box motif in the C-terminal domain of GogB. GogB-deficient Salmonella were unable to limit NFκB activation, which lead to increased proinflammatory responses in infected mice accompanied by extensive tissue damage and enhanced colonization in the gut during long-term chronic infections. We conclude that GogB is an anti-inflammatory effector that helps regulate inflammation-enhanced colonization by limiting tissue damage during infection
Target and reality of adjuvant endocrine therapy in postmenopausal patients with invasive breast cancer
Previous research evaluating the use of adjuvant endocrine therapy among postmenopausal breast cancer patients showed with 15–50% wide ranges of non-adherence rates. We evaluated this issue by analysing an unselected study group comprising of 325 postmenopausal women, diagnosed from 1997 to 2003 with hormonal receptor-positive invasive breast cancer. The different clinical situations that led to the discontinuation of adjuvant endocrine therapy were clearly defined and differentiated: non-adherence was not simply the act of stopping medication, but rather the manifestation of an intentional behaviour of the patient. Of the 287 patients who initiated endocrine therapy, 191 (66.6%) fully completed this treatment. Thirty-one patients (10.8%) showed non-adherence to therapy. Patients who had follow-up with a general practitioner, rather than in an oncologic unit, were more likely to be non-adherent (P=0.0088). Of 25 patients who changed medication due to therapy-related adverse effects, 20 (80%) patients fully completed the therapy after drug change. In adjuvant endocrine therapy, a lowering of the non-adherence rate to 10.8%, the lowest reported in the literature, is realistic when patients are cared for by a specialised oncologic unit focusing on the individual needs of the patients
The influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions
<p>Abstract</p> <p>Background</p> <p>The formation of adhesions following abdominal surgery is a well known problem. In previous studies we demonstrated the efficacy and safety of intraperitoneally applied phospholipids in order to prevent adhesion formation. This study evaluates the influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions.</p> <p>Methods</p> <p>In 40 Chinchilla rabbits adhesions were induced by median laparotomy, standardized abrasion of the visceral and parietal peritoneum in defined areas of the ventral abdominal wall and the caecum. The animals were randomly divided into four groups. They received either phospholipids 3.0% or normal saline (NaCl 0,9%) (5 ml/kg body weight). In 50% of the rabbits we simulated intraperitoneal bleeding by administration of blood (1,5 ml/kg body weight). The other half served as control group. Ten days following the operation the animals were sacrificed and adhesion formation was assessed by computer aided planimetry and histopathologic examination.</p> <p>Results</p> <p>The median adhesion surface area in the NaCl-group (n = 9) amounted to 68,72 mm<sup>2</sup>, in the NaCl+Blood-group (n = 10) 147,68 mm<sup>2</sup>. In the Phospholipid (PhL)-group (n = 9) the median adhesion surface area measured 9,35 mm<sup>2</sup>, in the PhL+Blood-group (n = 9) 11,95 mm<sup>2</sup>. The phospholipid groups had a significantly smaller adhesion surface area (p < 0.05).</p> <p>Conclusion</p> <p>Again these results confirm the efficacy of phospholipids in the prevention of adhesions in comparison to NaCl (p = 0,04). We also demonstrated the adhesion preventing effect of phospholipids in the presence of intraperitoneal blood.</p
Choice of Bacterial Growth Medium Alters the Transcriptome and Phenotype of Salmonella enterica Serovar Typhimurium
The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured
MicroRNA 10a Marks Regulatory T Cells
MicroRNAs (miRNAs) are crucial for regulatory T cell (Treg) stability and function. We report that microRNA-10a (miR-10a) is expressed in Tregs but not in other T cells including individual thymocyte subsets. Expression profiling in inbred mouse strains demonstrated that non-obese diabetic (NOD) mice with a genetic susceptibility for autoimmune diabetes have lower Treg-specific miR-10a expression than C57BL/6J autoimmune resistant mice. Inhibition of miR-10a expression in vitro leads to reduced FoxP3 expression levels and miR-10a expression is lower in unstable “exFoxP3” T cells. Unstable in vitro TGF-ß-induced, iTregs do not express miR-10a unless cultured in the presence of retinoic acid (RA) which has been associated with increased stability of iTreg, suggesting that miR-10a might play a role in stabilizing Treg. However, genetic ablation of miR-10a neither affected the number and phenotype of natural Treg nor the capacity of conventional T cells to induce FoxP3 in response to TGFβ, RA, or a combination of the two. Thus, miR-10a is selectively expressed in Treg but inhibition by antagomiRs or genetic ablation resulted in discordant effects on FoxP3
Bone loss and the aromatase inhibitors
The increasing use of systemic adjuvant therapies has considerably improved the prognosis from early breast cancer. However, some of these therapies affect bone metabolism, resulting in osteoporosis. Aromatase inhibitors lower circulating oestrogen levels to almost unrecordable levels in postmenopausal women, predisposing them to bone loss with an increase in fracture risk. Ongoing clinical trials are favouring the use of the aromatase inhibitors over tamoxifen and this may advocate greater use of these drugs in the future. Strategies for the identification and management of treatment-induced bone loss are currently being defined
- …