869 research outputs found

    Discovery of an anomalous Sub Giant Branch in the Color Magnitude Diagram of omega Centauri

    Full text link
    Using deep high-resolution multi-band images taken with the Very Large Telescope and the Hubble Space Telescope, we discovered a new anomalous sequence in the Color Magnitude Diagram of omega Cen. This feature appears as a narrow, well-defined Sub Giant Branch (SGB-a), which merges into the Main Sequence of the dominant cluster population at a magnitude significantly fainter than the cluster Turn-Off (TO). The simplest hypothesis assumes that the new feature is the extension of the anomalous Red Giant Branch (RGB-a) metal-rich population discovered by Lee et al. (1999) and Pancino et al. (2000). However, under this assumption the interpretation of the SGB-a does not easily fit into the context of a self-enrichment scenario within omega Cen. In fact, its TO magnitude, shape and extension are not compatible with a young, metal-rich population, as required by the self-enrichment process. The TO level of the SGB-a suggests indeed an age as old as the main cluster population, further supporting the extra-cluster origin of the most metal rich stars, as suggested by Ferraro, Bellazzini & Pancino (2002). Only accurate measurements of radial velocities and metal abundances for a representative sample of stars will firmly establish whether or not the SGB-a is actually related to the RGB-a and will finally shed light on the origin of the metal rich population of omega Cen.Comment: ApJL, in pres

    PRIMUS: The Effect of Physical Scale on the Luminosity-Dependence of Galaxy Clustering via Cross-Correlations

    Full text link
    We report small-scale clustering measurements from the PRIMUS spectroscopic redshift survey as a function of color and luminosity. We measure the real-space cross-correlations between 62,106 primary galaxies with PRIMUS redshifts and a tracer population of 545,000 photometric galaxies over redshifts from z=0.2 to z=1. We separately fit a power-law model in redshift and luminosity to each of three independent color-selected samples of galaxies. We report clustering amplitudes at fiducial values of z=0.5 and L=1.5 L*. The clustering of the red galaxies is ~3 times as strong as that of the blue galaxies and ~1.5 as strong as that of the green galaxies. We also find that the luminosity dependence of the clustering is strongly dependent on physical scale, with greater luminosity dependence being found between r=0.0625 Mpc/h and r=0.25 Mpc/h, compared to the r=0.5 Mpc/h to r=2 Mpc/h range. Moreover, over a range of two orders of magnitude in luminosity, a single power-law fit to the luminosity dependence is not sufficient to explain the increase in clustering at both the bright and faint ends at the smaller scales. We argue that luminosity-dependent clustering at small scales is a necessary component of galaxy-halo occupation models for blue, star-forming galaxies as well as for red, quenched galaxies.Comment: 13 pages, 6 figures, 5 tables; published in ApJ (revised to match published version

    PRIMUS: An observationally motivated model to connect the evolution of the AGN and galaxy populations out to z~1

    Full text link
    We present an observationally motivated model to connect the AGN and galaxy populations at 0.2<z<1.0 and predict the AGN X-ray luminosity function (XLF). We start with measurements of the stellar mass function of galaxies (from the Prism Multi-object Survey) and populate galaxies with AGNs using models for the probability of a galaxy hosting an AGN as a function of specific accretion rate. Our model is based on measurements indicating that the specific accretion rate distribution is a universal function across a wide range of host stellar mass with slope gamma_1 = -0.65 and an overall normalization that evolves with redshift. We test several simple assumptions to extend this model to high specific accretion rates (beyond the measurements) and compare the predictions for the XLF with the observed data. We find good agreement with a model that allows for a break in the specific accretion rate distribution at a point corresponding to the Eddington limit, a steep power-law tail to super-Eddington ratios with slope gamma_2 = -2.1 +0.3 -0.5, and a scatter of 0.38 dex in the scaling between black hole and host stellar mass. Our results show that samples of low luminosity AGNs are dominated by moderately massive galaxies (M* ~ 10^{10-11} M_sun) growing with a wide range of accretion rates due to the shape of the galaxy stellar mass function rather than a preference for AGN activity at a particular stellar mass. Luminous AGNs may be a severely skewed population with elevated black hole masses relative to their host galaxies and in rare phases of rapid accretion.Comment: 11 pages, 5 figures, emulateapj format, updated to match version accepted for publication in Ap

    The Mid-IR and X-ray Selected QSO Luminosity Function

    Full text link
    We present the J-band luminosity function of 1838 mid-infrared and X-ray selected AGNs in the redshift range 0<z<5.85. These luminosity functions are constructed by combining the deep multi-wavelength broad-band observations from the UV to the mid-IR of the NDWFS Bootes field with the X-ray observations of the XBootes survey and the spectroscopic observations of the same field by AGES. Our sample is primarily composed of IRAC-selected AGNs, targeted using modifications of the Stern et al.(2005) criteria, complemented by MIPS 24 microns and X-ray selected AGNs to alleviate the biases of IRAC mid-IR selection against z~4.5 quasars and AGNs faint with respect to their hosts. This sample provides an accurate link between low and high redshift AGN luminosity functions and does not suffer from the usual incompleteness of optical samples at z~3. We find that the space density of the brightest quasars strongly decreases from z=3 to z=0, while the space density of faint quasars is at least flat, and possibly increasing, over the same redshift range. At z>3 we observe a decrease in the space density of quasars of all brightnesses. We model the luminosity function by a double power-law and find that its evolution cannot be described by either pure luminosity or pure density evolution, but must be a combination of both. Our best-fit model has bright and faint power-law indices consistent with the low redshift measurements based on the 2QZ and 2SLAQ surveys and it generally agrees with the number of bright quasars predicted by other LFs at all redshifts. If we construct the QSO luminosity function using only the IRAC-selected AGNs, we find that the biases inherent to this selection method significantly modify the behavior of phi*(z) only for z<1 and have no significant impact upon the characteristic magnitude M*_J(z).Comment: Corrected minor typo in equations (4) and (6). Accepted for publication in The Astrophysical Journal. 56 pages + 6 tables + 16 figure

    Dark Matter Halo Models of Stellar Mass-Dependent Galaxy Clustering in PRIMUS+DEEP2 at 0.2<z<1.2

    Full text link
    We utilize Λ\LambdaCDM halo occupation models of galaxy clustering to investigate the evolving stellar mass dependent clustering of galaxies in the PRIsm MUlti-object Survey (PRIMUS) and DEEP2 Redshift Survey over the past eight billion years of cosmic time, between 0.2<z<1.20.2<z<1.2. These clustering measurements provide new constraints on the connections between dark matter halo properties and galaxy properties in the context of the evolving large-scale structure of the universe. Using both an analytic model and a set of mock galaxy catalogs, we find a strong correlation between central galaxy stellar mass and dark matter halo mass over the range Mhalo∼1011M_\mathrm{halo}\sim10^{11}-1013 h−1M⊙10^{13}~h^{-1}M_\odot, approximately consistent with previous observations and theoretical predictions. However, the stellar-to-halo mass relation (SHMR) and the mass scale where star formation efficiency reaches a maximum appear to evolve more strongly than predicted by other models, including models based primarily on abundance-matching constraints. We find that the fraction of satellite galaxies in haloes of a given mass decreases significantly from z∼0.5z\sim0.5 to z∼0.9z\sim0.9, partly due to the fact that haloes at fixed mass are rarer at higher redshift and have lower abundances. We also find that the M1/MminM_1/M_\mathrm{min} ratio, a model parameter that quantifies the critical mass above which haloes host at least one satellite, decreases from ≈20\approx20 at z∼0z\sim0 to ≈13\approx13 at z∼0.9z\sim0.9. Considering the evolution of the subhalo mass function vis-\`{a}-vis satellite abundances, this trend has implications for relations between satellite galaxies and halo substructures and for intracluster mass, which we argue has grown due to stripped and disrupted satellites between z∼0.9z\sim0.9 and z∼0.5z\sim0.5.Comment: 17 pages, 9 figures and 4 tables; Astrophysical Journal, publishe

    PRIMUS + DEEP2: Clustering of X-ray, Radio and IR-AGN at z~0.7

    Full text link
    We measure the clustering of X-ray, radio, and mid-IR-selected active galactic nuclei (AGN) at 0.2 < z < 1.2 using multi-wavelength imaging and spectroscopic redshifts from the PRIMUS and DEEP2 redshift surveys, covering 7 separate fields spanning ~10 square degrees. Using the cross-correlation of AGN with dense galaxy samples, we measure the clustering scale length and slope, as well as the bias, of AGN selected at different wavelengths. Similar to previous studies, we find that X-ray and radio AGN are more clustered than mid-IR-selected AGN. We further compare the clustering of each AGN sample with matched galaxy samples designed to have the same stellar mass, star formation rate, and redshift distributions as the AGN host galaxies and find no significant differences between their clustering properties. The observed differences in the clustering of AGN selected at different wavelengths can therefore be explained by the clustering differences of their host populations, which have different distributions in both stellar mass and star formation rate. Selection biases inherent in AGN selection, therefore, determine the clustering of observed AGN samples. We further find no significant difference between the clustering of obscured and unobscured AGN, using IRAC or WISE colors or X-ray hardness ratio.Comment: Accepted to ApJ. 23 emulateapj pages, 15 figures, 4 table
    • …
    corecore