1,943 research outputs found

    Redox-mediated reactions of vinylferrocene: Toward redox auxiliaries

    Get PDF
    Chemical redox reactions have been exploited to transform unreactive vinylferrocene into a powerful dienophile for the Diels–Alder reaction and reactive substrate for thiol addition reactions upon conversion to its ferrocenium state. We have further investigated the ability of these reactions to facilitate redox-auxiliary-like reactivity by further hydrogenolyisis of the Diels–Alder adduct to the corresponding cyclopentane derivative

    What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters

    Get PDF
    We explore the structures of protoclusters and their relationship with high-redshift clusters using the Millennium Simulation combined with a semi-analytic model. We find that protoclusters are very extended, with 90 per cent of their mass spread across∌35 h−1 Mpc commoving at z =2 (∌30 arcmin). The ‘main halo’, which can manifest as a high-redshift cluster or group, is only a minor feature of the protocluster, containing less than 20 per cent of all protocluster galaxies at z = 2. Furthermore, many protoclusters do not contain a main halo that is massive enough to be identified as a high-redshift cluster. Protoclusters exist in a range of evolutionary states at high redshift, independent of the mass they will evolve to at z = 0. We show that the evolutionary state of a protocluster can be approximated by the mass ratio of the first and second most massive haloes within the protocluster, and the z = 0 mass of a protocluster can be estimated to within 0.2 dex accuracy if both the mass of the main halo and the evolutionary state are known. We also investigate the biases introduced by only observing star-forming protocluster members within small fields. The star formation rate required for line-emitting galaxies to be detected is typically high, which leads to the artificial loss of low-mass galaxies from the protocluster sample. This effect is stronger for observations of the centre of the protocluster, where the quenched galaxy fraction is higher. This loss of low-mass galaxies, relative to the field, distorts the size of the galaxy overdensity, which in turn can contribute to errors in predicting the z = 0 evolved mass

    Interval Management Display Design Study

    Get PDF
    In 2012, the Federal Aviation Administration (FAA) estimated that U.S. commercial air carriers moved 736.7 million passengers over 822.3 billion revenue-passenger miles. The FAA also forecasts, in that same report, an average annual increase in passenger traffic of 2.2 percent per year for the next 20 years, which approximates to one-and-a-half times the number of today's aircraft operations and passengers by the year 2033. If airspace capacity and throughput remain unchanged, then flight delays will increase, particularly at those airports already operating near or at capacity. Therefore it is critical to create new and improved technologies, communications, and procedures to be used by air traffic controllers and pilots. National Aeronautics and Space Administration (NASA), the FAA, and the aviation industry are working together to improve the efficiency of the National Airspace System and the cost to operate in it in several ways, one of which is through the creation of the Next Generation Air Transportation System (NextGen). NextGen is intended to provide airspace users with more precise information about traffic, routing, and weather, as well as improve the control mechanisms within the air traffic system. NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) Project is designed to contribute to the goals of NextGen, and accomplishes this by integrating three NASA technologies to enable fuel-efficient arrival operations into high-density airports. The three NASA technologies and procedures combined in the ATD-1 concept are advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted and fuel efficient arrival streams in high-density terminal airspace

    The structure and evolution of a forming galaxy cluster at z = 1.62

    Get PDF
    We present a comprehensive picture of the Cl 0218.3−0510 protocluster at z = 1.623 across 10 comoving Mpc. Using filters that tightly bracket the Balmer and 4000 Å breaks of the protocluster galaxies we obtain precise photometric redshifts resulting in a protocluster galaxy sample that is 89 ± 5 per cent complete and has a contamination of only 12 ± 5 per cent. Both star-forming and quiescent protocluster galaxies are located, which allows us to map the structure of the forming cluster for the first time. The protocluster contains six galaxy groups, the largest of which is the nascent cluster. Only a small minority of the protocluster galaxies are in the nascent cluster (11 per cent) or in the other galaxy groups (22 per cent), as most protocluster galaxies reside between the groups. Unobscured star-forming galaxies predominantly reside between the protocluster’s groups, whereas red galaxies make up a large fraction of the groups’ galactic content, so observing the protocluster through only one of these types of galaxies results in a biased view of the protocluster’s structure. The structure of the protocluster reveals how much mass is available for the future growth of the cluster and we use the Millennium Simulation, scaled to a Planck cosmology, to predict that Cl 0218.3−0510 will evolve into a 2.7+3.9 −1.7 × 1014M cluster by the present day

    MISSE-X: An ISS External Platform for Space Environmental Studies in the Post-Shuttle Era

    Get PDF
    Materials International Space Station Experiment-X (MISSE-X) is a proposed International Space Station (ISS) external platform for space environmental studies designed to advance the technology readiness of materials and devices critical for future space exploration. The MISSE-X platform will expand ISS utilization by providing experimenters with unprecedented low-cost space access and return on investment (ROI). As a follow-on to the highly successful MISSE series of ISS experiments, MISSE-X will provide advances over the original MISSE configurations including incorporation of plug-and-play experiments that will minimize return mass requirements in the post-Shuttle era, improved active sensing and monitoring of the ISS external environment for better characterization of environmental effects, and expansion of the MISSE-X user community through incorporation of new, customer-desired capabilities. MISSE-X will also foster interest in science, technology, engineering, and math (STEM) in primary and secondary schools through student collaboration and participation.1,

    SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p

    Probing the extragalactic fast transient sky at minute timescales with DECam

    Get PDF
    Searches for optical transients are usually performed with a cadence of days to weeks, optimised for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour timescales. Here, we present the results of deep searches for dim, minute-timescale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20s exposures to systematically probe timescales down to 1.17 minutes at magnitude limits g>23g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multi-band imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multi-facility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-timescale fast optical transient rates for a range of depths and timescales. Finally, we demonstrate that optical gg-band light curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.Comment: Published in MNRA

    Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas

    Get PDF
    HighlightsDenitrifying woodchip bioreactors treat nitrate-N in a variety of applications and geographies.This review focuses on subsurface drainage bioreactors and bed-style designs (including in-ditch).Monitoring and reporting recommendations are provided to advance bioreactor science and engineering. Denitrifying bioreactors enhance the natural process of denitrification in a practical way to treat nitrate-nitrogen (N) in a variety of N-laden water matrices. The design and construction of bioreactors for treatment of subsurface drainage in the U.S. is guided by USDA-NRCS Conservation Practice Standard 605. This review consolidates the state of the science for denitrifying bioreactors using case studies from across the globe with an emphasis on full-size bioreactor nitrate-N removal and cost-effectiveness. The focus is on bed-style bioreactors (including in-ditch modifications), although there is mention of denitrifying walls, which broaden the applicability of bioreactor technology in some areas. Subsurface drainage denitrifying bioreactors have been assessed as removing 20% to 40% of annual nitrate-N loss in the Midwest, and an evaluation across the peer-reviewed literature published over the past three years showed that bioreactors around the world have been generally consistent with that (N load reduction median: 46%; mean ±SD: 40% ±26%; n = 15). Reported N removal rates were on the order of 5.1 g N m-3 d-1 (median; mean ±SD: 7.2 ±9.6 g N m-3 d-1; n = 27). Subsurface drainage bioreactor installation costs have ranged from less than 5,000to5,000 to 27,000, with estimated cost efficiencies ranging from less than 2.50kg−1Nyear−1toroughly2.50 kg-1 N year-1 to roughly 20 kg-1 N year-1 (although they can be as high as $48 kg-1 N year-1). A suggested monitoring setup is described primarily for the context of conservation practitioners and watershed groups for assessing annual nitrate-N load removal performance of subsurface drainage denitrifying bioreactors. Recommended minimum reporting measures for assessing and comparing annual N removal performance include: bioreactor dimensions and installation date; fill media size, porosity, and type; nitrate-N concentrations and water temperatures; bioreactor flow treatment details; basic drainage system and bioreactor design characteristics; and N removal rate and efficiency

    SoK: Contemporary Issues and Challenges to Enable Cyber Situational Awareness for Network Security

    Get PDF
    Cyber situational awareness is an essential part of cyber defense that allows the cybersecurity operators to cope with the complexity of today's networks and threat landscape. Perceiving and comprehending the situation allow the operator to project upcoming events and make strategic decisions. In this paper, we recapitulate the fundamentals of cyber situational awareness and highlight its unique characteristics in comparison to generic situational awareness known from other fields. Subsequently, we provide an overview of existing research and trends in publishing on the topic, introduce front research groups, and highlight the impact of cyber situational awareness research. Further, we propose an updated taxonomy and enumeration of the components used for achieving cyber situational awareness. The updated taxonomy conforms to the widely-accepted three-level definition of cyber situational awareness and newly includes the projection level. Finally, we identify and discuss contemporary research and operational challenges, such as the need to cope with rising volume, velocity, and variety of cybersecurity data and the need to provide cybersecurity operators with the right data at the right time and increase their value through visualization
    • 

    corecore