20,470 research outputs found

    AgRISTARS: Interim catalog ground data summary, data acquisition year 1979

    Get PDF
    To honor numerous requests for information about data holdings, and to facilitate the requirements specifications process, a series of interim catalogs are being developed. The 1979 data acquisition year is covered in this volume with subsequent years to follow under different covers. This catalog lists by state those sample segment numbers for which aircraft data has been acquired and/or field inventory products produced

    CFD modelling of double-skin facades with venetian blinds

    Get PDF
    This paper describes CFD modelling of Double Skin Façades (DSF) with venetian blinds inside the façade cavity. The 2-D modelling work investigates the coupled convective, conductive and radiative heat transfer through the DSF system. The angles of the venetian blind can be adjusted and a series of angles (0, 30, 45, 60 and 80 degrees) has been modelled. The modelling results are compared with the measurements from a section of façade tested within a solar simulator and with predictions from a component based nodal model. Agreement between the three methods is generally good. Discrepancies in the results are generally caused by the simplification of the CFD model resulting less turbulence mixing within the façade cavity. The CFD simulation output suggests that the presence of the venetian blinds has led up to 35 percent enhancement in natural ventilation flow for the façade cavity and 75 percent reduction in heat loads for the internal environment. It was also found that little changes of the convective heat transfer coefficients on the glazing surfaces have been caused by the venetian blinds with different angles

    Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp

    Get PDF
    P.R.W. was funded by the University of Stirling, C.V.B. and S.M.G. were funded by Nuffield Research Placements and N.C., J.G. and D.M.S. were funded by NERC (NE/J024481/1).Sex allocation theory has proved to be one the most successful theories in evolutionary ecology. However, its role in more applied aspects of ecology has been limited. Here we show how sex allocation theory helps uncover an otherwise hidden cost of neonicotinoid exposure in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate the sex of their offspring in line with Local Mate Competition (LMC) theory. Neonicotinoids are an economically important class of insecticides, but their deployment remains controversial, with evidence linking them to the decline of beneficial species. We demonstrate for the first time to our knowledge, that neonicotinoids disrupt the crucial reproductive behaviour of facultative sex allocation at sub-lethal, field-relevant doses in N. vitripennis. The quantitative predictions we can make from LMC theory show that females exposed to neonicotinoids are less able to allocate sex optimally and that this failure imposes a significant fitness cost. Our work highlights that understanding the ecological consequences of neonicotinoid deployment requires not just measures of mortality or even fecundity reduction among non-target species, but also measures that capture broader fitness costs, in this case offspring sex allocation. Our work also highlights new avenues for exploring how females obtain information when allocating sex under LMC.Publisher PDFPeer reviewe

    The Angular Momentum Operator in the Dirac Equation

    Full text link
    The Dirac equation in spherically symmetric fields is separated in two different tetrad frames. One is the standard cartesian (fixed) frame and the second one is the diagonal (rotating) frame. After separating variables in the Dirac equation in spherical coordinates, and solving the corresponding eingenvalues equations associated with the angular operators, we obtain that the spinor solution in the rotating frame can be expressed in terms of Jacobi polynomials, and it is related to the standard spherical harmonics, which are the basis solution of the angular momentum in the Cartesian tetrad, by a similarity transformation.Comment: 13 pages,CPT-94/P.3027,late

    Collisions of boosted black holes: perturbation theory prediction of gravitational radiation

    Get PDF
    We consider general relativistic Cauchy data representing two nonspinning, equal-mass black holes boosted toward each other. When the black holes are close enough to each other and their momentum is sufficiently high, an encompassing apparent horizon is present so the system can be viewed as a single, perturbed black hole. We employ gauge-invariant perturbation theory, and integrate the Zerilli equation to analyze these time-asymmetric data sets and compute gravitational wave forms and emitted energies. When coupled with a simple Newtonian analysis of the infall trajectory, we find striking agreement between the perturbation calculation of emitted energies and the results of fully general relativistic numerical simulations of time-symmetric initial data.Comment: 5 pages (RevTex 3.0 with 3 uuencoded figures), CRSR-107
    corecore