229 research outputs found
Oral fluorography: Detection of corneal vascularization
Corneal vascularization is a pathological process occurring in a cornea suffering physical and/or physiological insult. Its presentation could impair clear vision and thus its detection is important. Unfortunately current methods to detect and grade corneal vascularization are largely subjective and therefore a uniform system to identify and grade its presence does not exist. This study has explored a method using oral fluorescein angiography to examine corneal vessel growth. The results show that corneal vascularization fluoresces and leaks fluorescein during an oral fluorescein study. This information indicates that a method potentially exists to detect, grade and follow corneal vascularization through an objective means
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
A One Health overview, facilitating advances in comparative medicine and translational research.
Table of contentsA1 One health advances and successes in comparative medicine and translational researchCheryl StroudA2 Dendritic cell-targeted gorilla adenoviral vector for cancer vaccination for canine melanomaIgor Dmitriev, Elena Kashentseva, Jeffrey N. Bryan, David T. CurielA3 Viroimmunotherapy for malignant melanoma in the companion dog modelJeffrey N. Bryan, David Curiel, Igor Dmitriev, Elena Kashentseva, Hans Rindt, Carol Reinero, Carolyn J. HenryA4 Of mice and men (and dogs!): development of a commercially licensed xenogeneic DNA vaccine for companion animals with malignant melanomaPhilip J. BergmanA5 Successful immunotherapy with a recombinant HER2-expressing Listeria monocytogenes in dogs with spontaneous osteosarcoma paves the way for advances in pediatric osteosarcomaNicola J. Mason, Josephine S. Gnanandarajah, Julie B. Engiles, Falon Gray, Danielle Laughlin, Anita Gaurnier-Hausser, Anu Wallecha, Margie Huebner, Yvonne PatersonA6 Human clinical development of ADXS-HER2Daniel O'ConnorA7 Leveraging use of data for both human and veterinary benefitLaura S. TremlA8 Biologic replacement of the knee: innovations and early clinical resultsJames P. StannardA9 Mizzou BioJoint Center: a translational success storyJames L. CookA10 University and industry translational partnership: from the lab to commercializationMarc JacobsA11 Beyond docking: an evolutionarily guided OneHealth approach to drug discoveryGerald J. Wyckoff, Lee Likins, Ubadah Sabbagh, Andrew SkaffA12 Challenges and opportunities for data applications in animal health: from precision medicine to precision husbandryAmado S. GuloyA13 A cloud-based programmable platform for healthHarlen D. HaysA14 Comparative oncology: One Health in actionAmy K. LeBlancA15 Companion animal diseases bridge the translational gap for human neurodegenerative diseaseJoan R. Coates, Martin L. Katz, Leslie A. Lyons, Gayle C. Johnson, Gary S. Johnson, Dennis P. O'BrienA16 Duchenne muscular dystrophy gene therapyDongsheng DuanA17 Polycystic kidney disease: cellular mechanisms to emerging therapiesJames P. CalvetA18 The domestic cat as a large animal model for polycystic kidney diseaseLeslie A. Lyons, Barbara GandolfiA19 The support of basic and clinical research by the Polycystic Kidney Disease FoundationDavid A. BaronA20 Using naturally occurring large animal models of human disease to enable clinical translation: treatment of arthritis using autologous stromal vascular fraction in dogsMark L. WeissA21 Regulatory requirements regarding clinical use of human cells, tissues, and tissue-based productsDebra A. WebsterA22 Regenerative medicine approaches to Type 1 diabetes treatmentFrancis N. KaranuA23 The zoobiquity of canine diabetes mellitus, man's best friend is a friend indeed-islet transplantationEdward J. RobbA24 One Medicine: a development model for cellular therapy of diabetesRobert J. Harman
Solar system Deep Time-Surveys of atmospheres, surfaces, and rings
Imaging and resolved spectroscopy reveal varying environmental conditions in
our dynamic solar system. Many key advances have focused on how these
conditions change over time. Observatory-level commitments to conduct annual
observations of solar system bodies would establish a long-term legacy
chronicling the evolution of dynamic planetary atmospheres, surfaces, and
rings. Science investigations will use these temporal datasets to address
potential biosignatures, circulation and evolution of atmospheres from the edge
of the habitable zone to the ice giants, orbital dynamics and planetary
seismology with ring systems, exchange between components in the planetary
system, and the migration and processing of volatiles on icy bodies, including
Ocean Worlds. The common factor among these diverse investigations is the need
for a very long campaign duration, and temporal sampling at an annual cadence.Comment: 10 pages, 4 figures: submitted for Astro2020 White Pape
Electrocardiographic Deep Learning for Predicting Post-Procedural Mortality
Background. Pre-operative risk assessments used in clinical practice are
limited in their ability to identify risk for post-operative mortality. We
hypothesize that electrocardiograms contain hidden risk markers that can help
prognosticate post-operative mortality. Methods. In a derivation cohort of
45,969 pre-operative patients (age 59+- 19 years, 55 percent women), a deep
learning algorithm was developed to leverage waveform signals from
pre-operative ECGs to discriminate post-operative mortality. Model performance
was assessed in a holdout internal test dataset and in two external hospital
cohorts and compared with the Revised Cardiac Risk Index (RCRI) score. Results.
In the derivation cohort, there were 1,452 deaths. The algorithm discriminates
mortality with an AUC of 0.83 (95% CI 0.79-0.87) surpassing the discrimination
of the RCRI score with an AUC of 0.67 (CI 0.61-0.72) in the held out test
cohort. Patients determined to be high risk by the deep learning model's risk
prediction had an unadjusted odds ratio (OR) of 8.83 (5.57-13.20) for
post-operative mortality as compared to an unadjusted OR of 2.08 (CI 0.77-3.50)
for post-operative mortality for RCRI greater than 2. The deep learning
algorithm performed similarly for patients undergoing cardiac surgery with an
AUC of 0.85 (CI 0.77-0.92), non-cardiac surgery with an AUC of 0.83
(0.79-0.88), and catherization or endoscopy suite procedures with an AUC of
0.76 (0.72-0.81). The algorithm similarly discriminated risk for mortality in
two separate external validation cohorts from independent healthcare systems
with AUCs of 0.79 (0.75-0.83) and 0.75 (0.74-0.76) respectively. Conclusion.
The findings demonstrate how a novel deep learning algorithm, applied to
pre-operative ECGs, can improve discrimination of post-operative mortality
Climatic history of the northeastern United States during the past 3000 years
Many ecosystem processes that influence Earth system feedbacks – vegetation growth, water and nutrient cycling, disturbance regimes – are strongly influenced by multidecadal- to millennial-scale climate variations that cannot be directly observed. Paleoclimate records provide information about these variations, forming the basis of our understanding and modeling of them. Fossil pollen records are abundant in the NE US, but cannot simultaneously provide information about paleoclimate and past vegetation in a modeling context because this leads to circular logic. If pollen data are used to constrain past vegetation changes, then the remaining paleoclimate archives in the northeastern US (NE US) are quite limited. Nonetheless, a growing number of diverse reconstructions have been developed but have not yet been examined together. Here we conduct a systematic review, assessment, and comparison of paleotemperature and paleohydrological proxies from the NE US for the last 3000 years. Regional temperature reconstructions (primarily summer) show a long-term cooling trend (1000 BCE–1700 CE) consistent with hemispheric-scale reconstructions, while hydroclimate data show gradually wetter conditions through the present day. Multiple proxies suggest that a prolonged, widespread drought occurred between 550 and 750 CE. Dry conditions are also evident during the Medieval Climate Anomaly, which was warmer and drier than the Little Ice Age and drier than today. There is some evidence for an acceleration of the longer-term wetting trend in the NE US during the past century; coupled with an abrupt shift from decreasing to increasing temperatures in the past century, these changes could have wide-ranging implications for species distributions, ecosystem dynamics, and extreme weather events. More work is needed to gather paleoclimate data in the NE US to make inter-proxy comparisons and to improve estimates of uncertainty in reconstructions
Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses
Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO and FDA requirements for HA coatings. Scratch testing of coatings on polished substrates revealed brittle failure mechanisms, amplified due to heat treatment and interfacial failure occurring from 2.3 to 5.0 N. Coatings that were deposited onto sandblasted substrates to mimic commercial implant surfaces, did not suffer from tensile cracking or trackside delamination showing substantial interfacial improvements to between 8.6 and 11.3 N. An exponential dissolution rate was observed from 0 to 2 h for as deposited coatings, which was eliminated via heat treatment. From 2 to 24 h ion release rates ordered P > Na > Mg > Ca > Fe whilst all coatings exhibited linear degradation rates, which reduced by factors of 2.4–3.0 following heat treatments
Recommended from our members
Reactions to the National Academies/Royal Society Report on Heritable Human Genome Editing.
In September 2020, a detailed report on Heritable Human Genome Editing was published. The report offers a translational pathway for the limited approval of germline editing under limited circumstances and assuming various criteria have been met. In this perspective, some three dozen experts from the fields of genome editing, medicine, bioethics, law, and related fields offer their candid reactions to the National Academies/Royal Society report, highlighting areas of support, omissions, disagreements, and priorities moving forward
- …