29 research outputs found

    Neural and Cognitive Signatures of Guilt Predict Hypocritical Blame

    Get PDF
    A common form of moral hypocrisy occurs when people blame others for moral violations that they themselves commit. It is assumed that hypocritical blamers act in this manner to falsely signal that they hold moral standards that they do not really accept. We tested this assumption by investigating the neurocognitive processes of hypocritical blamers during moral decision-making. Participants (62 adult UK residents; 27 males) underwent functional MRI scanning while deciding whether to profit by inflicting pain on others and then judged the blameworthiness of others’ identical decisions. Observers (188 adult U.S. residents; 125 males) judged participants who blamed others for making the same harmful choice to be hypocritical, immoral, and untrustworthy. However, analyzing hypocritical blamers’ behaviors and neural responses shows that hypocritical blame was positively correlated with conflicted feelings, neural responses to moral standards, and guilt-related neural responses. These findings demonstrate that hypocritical blamers may hold the moral standards that they apply to others.<br/

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Racial bias in neural response to others' pain is reduced with other-race contact

    Get PDF
    Observing the pain of others has been shown to elicit greater activation in sensory and emotional areas of the brain suggested to represent a neural marker of empathy. This modulation of brain responses to others' pain is dependent on the race of the observed person, such that observing own-race people in pain is associated with greater activity in the anterior cingulate and bilateral insula cortices compared to other-race people. Importantly, it is not known how this racial bias to pain in other-race individuals might change over time in new immigrants or might depend on the level and quality of contact with people of the other-race. We investigated these issues by recruiting Chinese students who had first arrived in Australia within the past 6 months to 5 years and assessing their level of contact with other races across different social contexts using comprehensive rating scales. During fMRI, participants observed videos of own-race/other-race individuals, as well as own-group/other-group individuals, receiving painful or non-painful touch. The typical racial bias in neural responses to observed pain was evident, whereby activation in the anterior cingulate cortex (ACC) was greater for pain in own-race compared to other-race people. Crucially, activation in the anterior cingulate to pain in other races increased significantly with the level of contact participants reported with people of the other race. Importantly, this correlation did not depend on the closeness of contact or personal relationships, but simply on the overall level of experience with people of the other race in their every-day environment. Racial bias in neural responses to others' pain, as a neural marker of empathy, therefore changes with experience in new immigrants at least within 5 years of arrival in the new society and, crucially, depends on the level of contact with people of the other race in every-day life contexts

    Intergroup relationships do not reduce racial bias in empathic neural responses to pain

    No full text
    Perceiving the pain of others activates similar neural structures to those involved in the direct experience of pain, including sensory and affective-motivational areas. Empathic responses can be modulated by race, such that stronger neural activation is elicited by the perception of pain in people of the same race compared with another race. In the present study, we aimed to identify when racial bias occurs in the time course of neural empathic responses to pain. We also investigated whether group affiliation could modulate the race effect. Using the minimal group paradigm, we assigned participants to one of two mixed-race teams. We examined event-related potentials from participants when viewing members of their own and the other team receiving painful or non-painful touch. We identified a significant racial bias in early ERP components at N1 over frontal electrodes, where Painful stimuli elicited a greater negative shift relative to Non-Painful stimuli in response to own race faces only. A long latency empathic response was also found at P3, where there was significant differentiation between Painful and Non-Painful stimuli regardless of Race or Group. There was no evidence that empathy-related brain activity was modulated by minimal group manipulation. These results support a model of empathy for pain that consists of early, automatic bias towards own-race empathic responses and a later top-down cognitive evaluation that does not differentiate between races and may ultimately lead to unbiased behaviour

    Stochastic model predicts evolving preferences in the Iowa gambling task

    No full text
    Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy
    corecore