13,005 research outputs found

    Discovery of shocked H2 around OH 231.8+4.2

    Get PDF
    We present K-band integral field observations of the circumstellar envelope of the evolved star OH 231.8+4.2. Spatial and spectral information were simultaneously acquired using the Sinfoni integral field unit, with adaptive optics, on the Very Large Telescope. The observations reveal the discovery of H2 emission (1) around the centre of the nebula and (2) located in clumps along the Western side of the Northern lobe, presumably associated with the strong shocks that stimulate the previously reported H-alpha emission at the same location. An observed H2 1-0/2-1S(1) line ratio of 8.3+/-1.9 was calculated for the central field, a value consistent with shock excitation.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Adaptive Optics Imaging of IRAS 18276-1431: a bipolar pre-planetary nebula with circumstellar "searchlight beams" and "arcs"

    Get PDF
    We present high-angular resolution images of the post-AGB nebula IRAS18276-1431 (also known as OH17.7-2.0) obtained with the Keck II Adaptive Optics (AO) system in its Natural Guide Star (NGS) mode in the Kp, Lp, and Ms near-infrared bands. We also present supporting optical F606W and F814W HST images as well as interferometric observations of the 12CO(J=1-0), 13CO(J=1-0), and 2.6mm continuum emission with OVRO. The envelope of IRAS18276-1431 displays a clear bipolar morphology in our optical and NIR images with two lobes separated by a dark waist and surrounded by a faint 4.5"x3.4" halo. Our Kp-band image reveals two pairs of radial ``searchlight beams'' emerging from the nebula center and several intersecting, arc-like features. From our CO data we derive a mass of M>0.38[D/3kpc]^2 Msun and an expansion velocity v_exp=17km/s for the molecular envelope. The density in the halo follows a radial power-law proportional to r^-3, which is consistent with a mass-loss rate increasing with time. Analysis of the NIR colors indicates the presence of a compact central source of ~300-500K dust illuminating the nebula in addition to the central star. Modeling of the thermal IR suggests a two-shell structure in the dust envelope: 1) an outer shell with inner and outer radius R_in~1.6E16cm and R_out>~1.25E17cm, dust temperature T_d~105-50K, and a mean mass-loss rate of Mdot~1E-3Msun/yr; and 2) an inner shell with R_in~6.3E14cm, T_dust~500-105K, and Mdot~3E-5Msun/yr. An additional population of big dust grains (radius a>~0.4mm) with T_dust=150-20K and mass M_dust=(0.16-1.6)E-3 [D/3kpc]^2 Msun can account for the observed sub-mm and mm flux excess. The mass of the envelope enclosed within R_out=1.25E17cm derived from SED modeling is ~1[D/3kpc]^2 Msun.Comment: 46 pages, 14 figures, 3 tables, accepted for publication in ApJ. Figures 12 & 13 in low resolution. Full resolution versions are available upon request to the first autho

    Darboux coordinates for (first order) tetrad gravity

    Full text link
    The Hamiltonian form of the Hilbert action in the first order tetrad formalism is examined. We perform a non-linear field redefinition of the canonical variables isolating the part of the spin connection which is canonically conjugate to the tetrad. The geometrical meaning of the constraints written in these new variables is examined.Comment: 12 pages, Latex. Minor presentation changes and some references added. Version to appear in Classical and Quantum Gravit

    Synthesis and Characterization of CoMo/Al2O3-MgO-(X) catalysts doped with alkaline oxides (K, Li)

    Get PDF
    CoMo catalysts were prepared using Al2O3-MgO-(X) hybrid supports, where X = K2O or Li2O. The textural, structural and acid-base properties of these materials were characterized by several techniques. The catalysts were preliminarily evaluated in the hydrodesulfurization (HDS), hydrogenation (HYD) and hydrocracking (HCK) model reactions. The aims of this work are to identify the effect of the addition of an alkaline oxide (either K2O or Li2O) to the Lewis acid sites in the CoMo/Al2O3-MgO formulation; and on the other hand, to establish a relationship between the acidity and the catalytic performance (hydrogenation function). The results obtained from the pyridine thermodesorption analysis and the n-butyl amine titration techniques show that the incorporation of an alkaline oxide to the CoMo/Al2O3-MgO formulation causes a slight decrease in the total number of acid sites (TNAS) with respect to Al2O3 and the Al2O3-MgO hybrid supports. Both the enhanced textural and structural stability of the CoMo/Al2O3-MgO-(X) catalytic formulations, which could be probably attributed to the incorporation of Li or K cations to the MgO framework, stabilizing it, can also be observed. As for the catalytic performance, the CoMo/Al2O3-MgO-(X) catalysts containing either Li2O or K2O, show a decrease in both the HYD and HYC conversions; however, the formulation containing Li2O shows the best catalytic behavior due to both the low n-octane yield and the low hydrocracking activity

    A search for CO+ in planetary nebulae

    Get PDF
    We have carried out a systematic search for the molecular ion CO+ in a sample of 8 protoplanetary and planetary nebulae in order to determine the origin of the unexpectedly strong HCO+ emission previously detected in these sources. An understanding of the HCO+ chemistry may provide direct clues to the physical and chemical evolution of planetary nebulae. We find that the integrated intensity of the CO+ line may be correlated with that of HCO+, suggesting that the reaction of CO+ with molecular hydrogen may be an important formation route for HCO+ in these planetary nebulae.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Pulsar Prospects for the Cherenkov Telescope Array

    Full text link
    In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITAS, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with "Crab-like" power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.Comment: 4 pages, 3 figures. In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    'The Brick' is not a brick : A comprehensive study of the structure and dynamics of the Central Molecular Zone cloud G0.253+0.016

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. 'the Brick'); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO J=4(0,4)−3(0,3)J=4(0,4)-3(0,3) data at 3 mm, using two new pieces of software which we make available to the community. First, scousepy, a Python implementation of the spectral line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line of sight velocity dispersion in this cloud, σvlos,1D=4.4±2.1\sigma_{v_{los}, {\rm 1D}}=4.4\pm2.1 kms−1^{-1}, which is somewhat larger than predicted by velocity dispersion-size relations for the Central Molecular Zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding σvlos,1D/σvpos,1D∼1.2±0.3\sigma_{v_{los}, {\rm 1D}}/\sigma_{v_{pos}, {\rm 1D}}\sim1.2\pm0.3. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not a single, coherent, and centrally-condensed molecular cloud; 'the Brick' is not a \emph{brick}. Instead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ.Peer reviewedFinal Accepted Versio
    • …
    corecore