6,601 research outputs found

    The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5

    Get PDF
    Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate optical ELG selections at z ≃ 1. Model [OII] emitters at 0.5 < z < 1.5 are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [OII] emitters are in reasonable agreement with observations. The selected [OII] emitters are hosted by haloes with Mhalo ≥ 1010.3h−1M⊙, with ∼90 per cent of them being central star-forming galaxies. The predicted mean halo occupation distributions of [OII] emitters have a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, ⟨N⟩[OII]cen⁠, being far from the canonical step function. The ⟨N⟩[OII]cen can be described as the sum of an asymmetric Gaussian for discs and a step function for spheroids, which plateau below unity. The model [OII] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At z ∼ 1, a comparison with observed g-band-selected galaxy, which is expected to be dominated by [OII] emitters, indicates that our model produces too few [OII] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies

    The host dark matter haloes of [O II] emitters at 0.5 < z < 1.5

    Get PDF
    Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate optical ELG selections at z ≃ 1. Model [OII] emitters at 0.5 < z < 1.5 are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [OII] emitters are in reasonable agreement with observations. The selected [OII] emitters are hosted by haloes with Mhalo ≥ 1010.3h−1M⊙, with ∼90 per cent of them being central star-forming galaxies. The predicted mean halo occupation distributions of [OII] emitters have a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, ⟨N⟩[OII]cen⁠, being far from the canonical step function. The ⟨N⟩[OII]cen can be described as the sum of an asymmetric Gaussian for discs and a step function for spheroids, which plateau below unity. The model [OII] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At z ∼ 1, a comparison with observed g-band-selected galaxy, which is expected to be dominated by [OII] emitters, indicates that our model produces too few [OII] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s&lt;SU-1&lt;/SU decrease seaward to around 4.5 km s&lt;SU-1&lt;/SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    Get PDF
    We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB=19.8M_B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 \AA) light curve out to 45 days past BB-band maximum light. We estimate that LSQ12gdj produced 0.96±0.070.96 \pm 0.07 MM_\odot of 56^{56}Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 \AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 \AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013< 10^{13} cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.Comment: 18 pages, 10 figures, accepted to MNRAS; v2 accepted version. Spectra available on WISEReP (http://www.weizmann.ac.il/astrophysics/wiserep/). Natural-system photometry and bolometric light curve available as online tables in MNRAS versio

    A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance

    Get PDF
    AMP-activated protein kinase (AMPK) in the ventromedial nucleus of the hypothalamus (VMH) and orexin (OX) in the lateral hypothalamic area (LHA) modulate brown adipose tissue (BAT) thermogenesis. However, whether these two molecular mechanisms act jointly or independently is unclear. Here, we show that the thermogenic effect of bone morphogenetic protein 8B (BMP8B) is mediated by the inhibition of AMPK in the VMH and the subsequent increase in OX signaling via the OX receptor 1 (OX1R). Accordingly, the thermogenic effect of BMP8B is totally absent in ox-null mice. BMP8B also induces browning of white adipose tissue (WAT), its thermogenic effect is sexually dimorphic (only observed in females), and its impact on OX expression and thermogenesis is abolished by the knockdown of glutamate vesicular transporter 2 (VGLUT2), implicating glutamatergic signaling. Overall, our data uncover a central network controlling energy homeostasis that may be of considerable relevance for obesity and metabolic disorders

    Carnegie Supernova Project-II: Extending the Near-Infrared Hubble Diagram for Type Ia Supernovae to z0.1z\sim0.1

    Full text link
    The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a "Cosmology" sample of 100\sim100 Type Ia supernovae located in the smooth Hubble flow (0.03z0.100.03 \lesssim z \lesssim 0.10). Light curves were also obtained of a "Physics" sample composed of 90 nearby Type Ia supernovae at z0.04z \leq 0.04 selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.Comment: 43 pages, 10 figures, accepted for publication in PAS
    corecore