3,650 research outputs found
Workshop Development and Delivery
At Purdue University, the central IT organization (Information Technology at Purdue) is charged with helping instructors (Faculty, staff, and graduate students) use technology to enhance teaching and learning. Our group develops workshops (face-to-face and online)) and documentation (written, video, etc.) to assist in this effort.
This presentation describes The Facilitator Maturation Process - the steps our facilitators must take to go from a new hire to an independently deploy-able trainer Recent steps we took to redesign our workshops to make them more engaging and instill active learning techniques in their delivery. The documentation creation process/workflow we instituted to streamline and insure timely completion of newly created and revised documents The supplemental video we have created so non-attendees can work through our documentation on their own time and pace, or attendees can review the material delivered in clas
Wnt and CDK-1 regulate cortical release of WRM-1/beta-catenin to control cell division orientation in early Caenorhabditis elegans embryos
In early Caenorhabditis elegans embryos, the Wingless/int (Wnt)- and Src-signaling pathways function in parallel to induce both the division orientation of the endomesoderm (EMS) blastomere and the endoderm fate of the posterior EMS daughter cell, called E. Here, we show that, in addition to its role in endoderm specification, the beta-catenin-related protein Worm armadillo 1 (WRM-1) also plays a role in controlling EMS division orientation. WRM-1 localizes to the cortex of cells in both embryos and larvae and is released from the cortex in a Wnt-responsive manner. We show that WRM-1 cortical release is disrupted in a hypomorphic cyclin-dependent protein kinase 1 (cdk-1) mutant and that WRM-1 lacking potential CDK-1 phosphoacceptor sites is retained at the cortex. In both cases, cortical WRM-1 interferes with EMS spindle rotation without affecting endoderm specification. Finally, we show that removal of WRM-1 from the cortex can restore WT division orientation, even when both Wnt- and Src-signaling pathways are compromised. Our findings are consistent with a model in which Wnt signaling and CDK-1 modify WRM-1 in a temporal and spatial manner to unmask an intrinsic polarity cue required for proper orientation of the EMS cell division axis
A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans
Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes
Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan
BACKGROUND: Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. RESULTS: Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. CONCLUSIONS: Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes
The RNA phosphatase PIR-1 regulates endogenous small RNA pathways in C. elegans [preprint]
Eukaryotic cells regulate 5\u27 triphosphorylated (ppp-) RNAs to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR1 family of RNA polyphosphatases remove both the β and γ phosphates from ppp-RNAs. Here we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RdRPs and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and -independent Argonaute pathways, and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species
E-β-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera)
Background: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae) was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. [br/]
Methodology and Principal Finding: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old) produce the highest quantity of E-b-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. [br/]
Conclusions/Significance: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β- ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers
Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle
Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time
Experimental Evaluation of Subgraph Isomorphism Solvers
International audienceSubgraph Isomorphism (SI) is an NP-complete problem which is at the heart of many structural pattern recognition tasks as it involves finding a copy of a pattern graph into a target graph. In the pattern recognition community, the most well-known SI solvers are VF2, VF3, and RI. SI is also widely studied in the constraint programming community, and many constraint-based SI solvers have been proposed since Ullman, such as LAD and Glasgow, for example. All these SI solvers can solve very quickly some large SI instances, that involve graphs with thousands of nodes. However, McCreesh et al. have recently shown how to randomly generate SI instances the hardness of which can be controlled and predicted, and they have built small instances which are computationally challenging for all solvers. They have also shown that some small instances, which are predicted to be easy and are easily solved by constraint-based solvers, appear to be challenging for VF2 and VF3. In this paper, we widen this study by considering a large test suite coming from eight benchmarks. We show that, as expected for an NP-complete problem, the solving time of an instance does not depend on its size, and that some small instances coming from real applications are not solved by any of the considered solvers. We also show that, if RI and VF3 can solve very quickly a large number of easy instances, for which Glasgow or LAD need more time, they fail at solving some other instances that are quickly solved by Glasgow or LAD, and they are clearly outperformed by Glasgow on hard instances. Finally, we show that we can easily combine solvers to take benefit of their complementarity
Recommended from our members
Towards an empirical test of realism in cognition
We review recent progress in designing an empirical test of (temporal) realism in cognition. Realism in this context is the property that cognitive variables always have well defined (if possibly unknown) values at all times. We focus most of our attention in this contribution on discussing the exact notion of realism that is to be tested, as we feel this issue has not received enough attention to date. We also give a brief outline of the empirical test, including some comments on an experimental realisation, and we discuss what we should conclude from any purported experimental ‘disproof’ of realism. This contribution is based on Yearsley and Pothos (2014)
The role of bisphosphonates in breast cancer: The present and future role of bisphosphonates in the management of patients with breast cancer
At least 25% of patients with breast cancer develop skeletal metastases, with bone the site of disease producing the greatest morbidity. It is apparent that the bisphosphonates present an important component of the treatment strategy. They are now the treatment of choice in tumour-induced hypercalcaemia, and they can reduce bone pain and skeletal complications such as pathological fractures. In addition, bisphosphonates are being increasingly evaluated in the prevention of bone metastases and to prevent and treat cancer therapy-induced osteoporosis. Ongoing research is aimed at trying to define the optimum route, dose, schedule and type of bisphosphonate
- …