92 research outputs found

    Multi-morbidity and its association with common cancer diagnoses: a UK Biobank prospective study

    Get PDF
    Background Whilst multi-morbidity is known to be a concern in people with cancer, very little is known about the risk of cancer in multi-morbid patients. This study aims to investigate the risk of being diagnosed with lung, colorectal, breast and prostate cancer associated with multi-morbidity. Methods We investigated the association between multi-morbidity and subsequent risk of cancer diagnosis in UK Biobank. Cox models were used to estimate the relative risks of each cancer of interest in multi-morbid participants, using the Cambridge Multimorbidity Score. The extent to which reverse causation, residual confounding and ascertainment bias may have impacted on the findings was robustly investigated. Results Of the 436,990 participants included in the study who were cancer-free at baseline, 21.6% (99,965) were multi-morbid (≥ 2 diseases). Over a median follow-up time of 10.9 [IQR 10.0–11.7] years, 9,019 prostate, 7,994 breast, 5,241 colorectal, and 3,591 lung cancers were diagnosed. After exclusion of the first year of follow-up, there was no clear association between multi-morbidity and risk of colorectal, prostate or breast cancer diagnosis. Those with ≥ 4 diseases at recruitment had double the risk of a subsequent lung cancer diagnosis compared to those with no diseases (HR 2.00 [95% CI 1.70–2.35] p for trend  Conclusions Individuals with multi-morbidity are at an increased risk of lung cancer diagnosis. While this association did not appear to be due to common sources of bias in observational studies, further research is needed to understand what underlies this association

    Krill availability in adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica

    Get PDF
    The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer-scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Ant-arctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth-integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history-driven adult krill migration rather than a resource-driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine-scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems

    Genetically predicted vegetable intake and cardiovascular diseases and risk factors: an investigation with Mendelian randomization

    Get PDF
    Background: The associations between vegetable intake and cardiovascular diseases have been demonstrated in observational studies, but less sufficiently in randomized trials. Mendelian randomization has been considered a promising alternative in causal inference. The separate effects of cooked and raw vegetable intake remain unclear. This study aimed to investigate the associations between cooked and raw vegetable intake with cardiovascular outcomes using MR. Methods: We identified 15 and 28 genetic variants statistically and biologically associated with cooked and raw vegetable intake, respectively, from previous genome-wide association studies, which were used as instrumental variables to estimate associations with coronary heart disease (CHD), stroke, heart failure (HF), and atrial fibrillation (AF). The independent effects of genetically predicted cooked and raw vegetable intake were examined using multivariable MR analysis. We performed one-sample and two-sample MR analyses and combined their results using meta-analysis. Bonferroni correction was applied for multiple comparisons. We performed two-sample MR analysis for cardiometabolic risk factors (serum lipids, blood pressure, body mass index, and glycemic traits) to explore the potential mechanisms. Results: In the MR meta-analysis of 1.2 million participants, we found null evidence for associations between genetically predicted cooked and raw vegetable intake with CHD, HF, or AF. Raw vegetable intake was nominally associated with stroke (odds ratio [95% confidence interval] 0.82 [0.69–0.98] per 1 daily serving increase, p = 0.03), but this association did not pass the corrected significance level. We found consistently null evidence for associations with serum lipids, blood pressure, body mass index, or glycemic traits. Conclusions: We found null evidence for associations between genetically predicted vegetable intake with CHD, AF, HF, or cardiometabolic risk factors in this MR study. Raw vegetable intake may reduce risk of stroke, but this warrants more research. True associations between vegetable intake and CVDs cannot be completely ruled out, and future investigations are required for causal inference in nutritional research

    Raw and Cooked Vegetable Consumption and Risk of Cardiovascular Disease:a Study of 400,000 Adults in UK Biobank

    Get PDF
    OBJECTIVES: Higher levels of vegetable consumption have been associated with a lower risk of cardiovascular disease (CVD), but the independent effect of raw and cooked vegetable consumption remains unclear. METHODS: From the UK Biobank cohort, 399,586 participants without prior CVD were included in the analysis. Raw and cooked vegetable intakes were measured with a validated dietary questionnaire at baseline. Multivariable Cox regression was used to estimate the associations between vegetable intake and CVD incidence and mortality, adjusted for socioeconomic status, health status, and lifestyle factors. The potential effect of residual confounding was assessed by calculating the percentage reduction in the likelihood ratio (LR) statistics after adjustment for the confounders. RESULTS: The mean age was 56 years and 55% were women. Mean intakes of raw and cooked vegetables were 2.3 and 2.8 tablespoons/day, respectively. During 12 years of follow-up, 18,052 major CVD events and 4,406 CVD deaths occurred. Raw vegetable intake was inversely associated with both CVD incidence (adjusted hazard ratio (HR) [95% CI] for the highest vs. lowest intake: 0.89 [0.83–0.95]) and CVD mortality (0.85 [0.74–0.97]), while cooked vegetable intake was not (1.00 [0.91–1.09] and 0.96 [0.80–1.13], respectively). Adjustment for potential confounders reduced the LR statistics for the associations of raw vegetables with CVD incidence and mortality by 82 and 87%, respectively. CONCLUSIONS: Higher intakes of raw, but not cooked, vegetables were associated with lower CVD risk. Residual confounding is likely to account for much, if not all, of the observed associations. This study suggests the need to reappraise the evidence on the burden of CVD disease attributable to low vegetable intake in the high-income populations

    The Stellar and Gas Kinematics of the LITTLE THINGS Dwarf Irregular Galaxy NGC 1569

    Get PDF
    In order to understand the formation and evolution of dIm galaxies, one needs to understand their three-dimensional structure. We present measurements of the stellar velocity dispersion in NGC 1569, a nearby post-starburst dIm galaxy. The stellar vertical velocity dispersion, σz\sigma_{\rm z}, coupled with the maximum rotational velocity derived from \ion{H}{1} observations, VmaxV_{\rm max}, gives a measure of how kinematically hot the galaxy is, and, therefore, indicates its structure. We conclude that the stars in NGC 1569 are in a thick disk with a Vmax/σzV_{\rm max} / \sigma_{\rm z} = 2.4 ±\pm 0.7. In addition to the structure, we analyze the ionized gas kinematics from \ion{O}{3} observations along the morphological major axis. These data show evidence for outflow from the inner starburst region and a potential expanding shell near supermassive star cluster (SSC) A. When compared to the stellar kinematics, the velocity dispersion of the stars increase in the region of SSC A supporting the hypothesis of an expanding shell. The stellar kinematics closely follow the motion of the gas. Analysis of high resolution \ion{H}{1} data clearly reveals the presence of an \ion{H}{1} cloud that appears to be impacting the eastern edge of NGC 1569. Also, an ultra-dense \ion{H}{1} cloud can be seen extending to the west of the impacting \ion{H}{1} cloud. This dense cloud is likely the remains of a dense \ion{H}{1} bridge that extended through what is now the central starburst area. The impacting \ion{H}{1} cloud was the catalyst for the starburst, thus turning the dense gas into stars over a short timescale, \sim 1 Gyr. We performed a careful study of the spectral energy distribution using infrared, optical, and ultraviolet photometry producing a state-of-the-art mass model for the stellar disk. This mass modeling shows that stars dominate the gravitational potential in the inner 1 kpc.Comment: 49 pages, 25 figures, accepted in A

    A candidate runaway supermassive black hole identified by shocks and star formation in its wake

    Get PDF
    The interaction of a runaway supermassive black hole (SMBH) with the circumgalactic medium (CGM) can lead to the formation of a wake of shocked gas and young stars behind it. Here we report the serendipitous discovery of an extremely narrow linear feature in HST/ACS images that may be an example of such a wake. The feature extends 62 kpc from the nucleus of a compact star-forming galaxy at z=0.964. Keck LRIS spectra show that the [OIII]/Hβ\beta ratio varies from ~1 to ~10 along the feature, indicating a mixture of star formation and fast shocks. The feature terminates in a bright [OIII] knot with a luminosity of 1.9x1041^{41} ergs/s. The stellar continuum colors vary along the feature, and are well-fit by a simple model that has a monotonically increasing age with distance from the tip. The line ratios, colors, and the overall morphology are consistent with an ejected SMBH moving through the CGM at high speed while triggering star formation. The best-fit time since ejection is ~39 Myr and the implied velocity is v~1600 km/s. The feature is not perfectly straight in the HST images, and we show that the amplitude of the observed spatial variations is consistent with the runaway SMBH interpretation. Opposite the primary wake is a fainter and shorter feature, marginally detected in [OIII] and the rest-frame far-ultraviolet. This feature may be shocked gas behind a binary SMBH that was ejected at the same time as the SMBH that produced the primary wake.Comment: Accepted for publication in ApJ Letters. The key data are in Figure 1: a really odd thin streak in HST images, with a complex emission line spectrum. Figure 7 is an illustration of our proposed interpretatio

    Social determinants of ethnic disparities in SARS-CoV-2 infection: UK Biobank SARS-CoV-2 Serology Study

    Get PDF
    Background: The social determinants of ethnic disparities in risk of SARS-CoV-2 infection during the first wave of the pandemic in the UK remain unclear. Methods: In May 2020, a total of 20 195 adults were recruited from the general population into the UK Biobank SARS-CoV-2 Serology Study. Between mid-May and mid-November 2020, participants provided monthly blood samples. At the end of the study, participants completed a questionnaire on social factors during different periods of the pandemic. Logistic regression yielded ORs for the association between ethnicity and SARS-CoV-2 immunoglobulin G antibodies (indicating prior infection) using blood samples collected in July 2020, immediately after the first wave. Results: After exclusions, 14 571 participants (mean age 56; 58% women) returned a blood sample in July, of whom 997 (7%) had SARS-CoV-2 antibodies. Seropositivity was strongly related to ethnicity: compared with those of White ethnicity, ORs (adjusted for age and sex) for Black, South Asian, Chinese, Mixed and Other ethnic groups were 2.66 (95% CI 1.94–3.60), 1.66 (1.15–2.34), 0.99 (0.42–1.99), 1.42 (1.03–1.91) and 1.79 (1.27–2.47), respectively. Additional adjustment for social factors reduced the overall likelihood ratio statistics for ethnicity by two-thirds (67%; mostly from occupational factors and UK region of residence); more precise measurement of social factors may have further reduced the association. Conclusions: This study identifies social factors that are likely to account for much of the ethnic disparities in SARS-CoV-2 infection during the first wave in the UK, and highlights the particular relevance of occupation and residential region in the pathway between ethnicity and SARS-CoV-2 infection

    A highly magnified candidate for a young galaxy seen when the Universe was 500 Myrs old

    Get PDF
    The early Universe at redshift z\sim6-11 marks the reionization of the intergalactic medium, following the formation of the first generation of stars. However, those young galaxies at a cosmic age of \lesssim 500 million years (Myr, at z \gtrsim 10) remain largely unexplored as they are at or beyond the sensitivity limits of current large telescopes. Gravitational lensing by galaxy clusters enables the detection of high-redshift galaxies that are fainter than what otherwise could be found in the deepest images of the sky. We report the discovery of an object found in the multi-band observations of the cluster MACS1149+22 that has a high probability of being a gravitationally magnified object from the early universe. The object is firmly detected (12 sigma) in the two reddest bands of HST/WFC3, and not detected below 1.2 {\mu}m, matching the characteristics of z\sim9 objects. We derive a robust photometric redshift of z = 9.6 \pm 0.2, corresponding to a cosmic age of 490 \pm 15Myr (i.e., 3.6% of the age of the Universe). The large number of bands used to derive the redshift estimate make it one of the most accurate estimates ever obtained for such a distant object. The significant magnification by cluster lensing (a factor of \sim15) allows us to analyze the object's ultra-violet and optical luminosity in its rest-frame, thus enabling us to constrain on its stellar mass, star-formation rate and age. If the galaxy is indeed at such a large redshift, then its age is less than 200 Myr (at the 95% confidence level), implying a formation redshift of zf \lesssim 14. The object is the first z>9 candidate that is bright enough for detailed spectroscopic studies with JWST, demonstrating the unique potential of galaxy cluster fields for finding highly magnified, intrinsically faint galaxies at the highest redshifts.Comment: Submitted to the Nature Journal. 39 Pages, 13 figure
    corecore