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Abstract: Background: The associations between vegetable intake and cardiovascular diseases have
been demonstrated in observational studies, but less sufficiently in randomized trials. Mendelian
randomization has been considered a promising alternative in causal inference. The separate effects
of cooked and raw vegetable intake remain unclear. This study aimed to investigate the associations
between cooked and raw vegetable intake with cardiovascular outcomes using MR. Methods: We
identified 15 and 28 genetic variants statistically and biologically associated with cooked and raw
vegetable intake, respectively, from previous genome-wide association studies, which were used
as instrumental variables to estimate associations with coronary heart disease (CHD), stroke, heart
failure (HF), and atrial fibrillation (AF). The independent effects of genetically predicted cooked and
raw vegetable intake were examined using multivariable MR analysis. We performed one-sample and
two-sample MR analyses and combined their results using meta-analysis. Bonferroni correction was
applied for multiple comparisons. We performed two-sample MR analysis for cardiometabolic risk
factors (serum lipids, blood pressure, body mass index, and glycemic traits) to explore the potential
mechanisms. Results: In the MR meta-analysis of 1.2 million participants, we found null evidence for
associations between genetically predicted cooked and raw vegetable intake with CHD, HF, or AF.
Raw vegetable intake was nominally associated with stroke (odds ratio [95% confidence interval]
0.82 [0.69–0.98] per 1 daily serving increase, p = 0.03), but this association did not pass the corrected
significance level. We found consistently null evidence for associations with serum lipids, blood
pressure, body mass index, or glycemic traits. Conclusions: We found null evidence for associations
between genetically predicted vegetable intake with CHD, AF, HF, or cardiometabolic risk factors
in this MR study. Raw vegetable intake may reduce risk of stroke, but this warrants more research.
True associations between vegetable intake and CVDs cannot be completely ruled out, and future
investigations are required for causal inference in nutritional research.

Keywords: vegetable intake; raw vegetable; cooked vegetable; Mendelian randomization; UK
Biobank; polygenic risk score; cardiovascular diseases; cardiometabolic risk factors

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of global burden of disease [1]
and are caused by a complex interplay of genetic and environmental factors [2,3]. It is
estimated that 8 million CVD-related deaths and 188 million CVD disability-adjusted life
years are attributable to unhealthy diets annually [3], of which up to 20% may be due to
insufficient vegetable intake [4].
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There exists a substantial body of observational evidence supporting inverse associa-
tions between vegetable intake and cardiovascular diseases and risk factors [5,6], which
has led to international dietary guidelines recommending higher intake of vegetables for
primary prevention [7–9]. A meta-analysis of 45 cohort studies found that higher vegetable
intake was associated with a 13% lower risk of CVDs [10], with other meta-analyses re-
porting similar risk reductions in coronary heart disease (CHD) and stroke [11]. In spite of
large sample sizes, long follow-up periods, and adjustment for multiple confounders in
some studies [12–14], observational associations have been criticized for predisposition to
residual confounding. The residual confounding may result from unmeasured covariates
and/or imperfect measurement of adjusted confounders, because vegetable intake tends
to be correlated with socioeconomic status and lifestyle, among other factors, which are
difficult to measure accurately [15]. A previous study suggested that residual confounding
accounted for a large proportion of the observed association [16].

So far, evidence from randomized controlled trials has been limited. For example,
a meta-analysis of eight trials, including a total of 400 individuals, demonstrated null
effects of increasing vegetable intake on systolic blood pressure (SBP), fasting glucose (FG),
high-density lipoprotein (HDL), or triglyceride [17]. Another meta-analyses of 12 trials,
including 1000 individuals, reported a small reduction in body weight (0.68 kg) following
a 14-week isocaloric diet with high vegetable content [6]. These trials suggest limited
evidence for the effects of increasing vegetable intake on cardiometabolic risk factors, in
contrast to observational evidence, which could be due to short periods of intervention and
follow up. These trials mainly examined intermediate cardiometabolic risk factors, which
are indirect evidence regarding the effects on hard clinical outcomes of incident CVDs. In
addition, most studies have examined vegetable intake as a whole and the separate effects
of raw and cooked vegetable intake remain inconsistent [12,14,16].

Mendelian randomization (MR) is a study design using genetic variants, usually single
nucleotide polymorphisms (SNPs), as instrumental variables to uncover causal relation-
ships between modifiable risk factors, intermediate traits, and health outcomes. MR is less
inclined to confounding and reverse causation than conventional observational studies
because SNPs are randomly allocated at meiosis and fixed after fertilization, and thus can-
not be affected by socio-demographic, behavioral factors, or health status, resembling the
principles of randomized controlled trials and generating more valid effect estimates [18].
When randomized trial evidence is insufficient, MR has been considered as a promising al-
ternative in causal inference [19]. MR has been widely applied in causal inference for a wide
range of risk factors and health outcomes. The objective of this study was to investigate the
effects of cooked and raw vegetable intake on CVD risk using an MR approach.

2. Methods

In this study, we performed both two-sample and one-sample MR to quantify the
associations between genetically predicted vegetable intake and cardiovascular outcomes.
Two-sample MR was performed with summary-level statistics of genome-wide association
studies (GWAS), and one-sample MR was performed with individual-level data from the
UK Biobank. Two-sample and one-sample MR estimates were meta-analyzed to obtain
overall effect estimates. We performed multivariable analysis as the primary analysis, in
which cooked and raw vegetable intake was adjusted for the other, aiming to examine their
separate effects. Univariable analysis, in which the effects of cooked and raw vegetable
intake were fitted separately, was performed as secondary analysis. An overview of the
methods is shown in Figure 1.
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Figure 1. The flowchart of the analysis on genetically predicted vegetable intake with cardiovas-
cular diseases. Solid line: primary analysis. Dashed line: secondary analysis. MR: Mendelian
randomization. SNP: single nucleotide polymorphism. UKB: UK Biobank. MR-PRESSO: Mendelian
Ran-domization Pleiotropy Residual Sum and Outlier method. CARDIoGRAMplusC4D: Coronary
ARtery DIsease Genome-wide Replication and Meta-analysis plus The Coronary Artery Disease
Genetics) consortium. MEGASTROKE: MEGASTROKE consortium. HERMES: HEart failure Molecu-
lar Epidemiology for therapeutic targetS consortium. GLGC: Global Lipids Genetics Consortium.
MAGIC: Meta-Analyses of Glucose and Insulin-related traits Consortium. ICBP: International Con-
sortium for Blood Pressure.

2.1. Genetic Instrument Selection

Genetic instruments associated with cooked and raw vegetable intake were identified
in three GWAS from the UK Biobank [20–22] (Supplementary Table S1). Individual intake
of cooked and raw vegetables (in number of heaped tablespoons; one heaped tablespoon
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is roughly equivalent to one serving in the UK) was measured using a food frequency
questionnaire at recruitment. The repeatability and validity of this questionnaire in the UK
Biobank were evaluated and confirmed in a previous analysis: the repeatability was 82%
for cooked vegetables and 72% for raw vegetables when compared to a repeat assessment
after four years, and high agreement was observed when compared to a 24-hour diet recall
assessment [23].

We combined all SNPs that were significant at a genome-wide significance level
(p < 5 × 10−8) in the three GWAS [20–22], and removed duplicates, rare variants (minor
allele frequency < 1%), or those in linkage disequilibrium (r2 > 0.001 or distance > 10,000 kb).
To further reduce horizontal pleiotropy, we searched the associated phenotypes for each
SNP in the PhenoScanner v2 database (http://www.phenoscanner.medschl.cam.ac.uk/,
accessed on 15 July 2023), and further removed SNPs that were associated with potential
confounders, such as smoking, alcohol drinking, blood pressure, and adiposity. A similar
approach was previously used to identify valid SNPs for vegetable intake in the UK
Biobank [24], but our method was able to identify more SNPs by incorporating three
relevant GWAS.

In total, we identified 15 and 28 eligible SNPs associated with cooked and raw veg-
etable intake, which explained 0.8% and 2.4% of phenotypic variance, respectively. The
SNPs were located in different gene loci. The majority of the loci were expressed in tissues
of the gastrointestinal tract and/or other organs of the digestive system (Supplementary
Table S2). The biological mechanisms behind the selected SNPs and vegetable consumption
were suggested to be mediated by the individual’s taste and smell preference, as some hit
SNPs (for example, rs9323534 [OR4K17]) were associated with olfactory receptors [21]. The
mechanisms were possibly additionally mediated by their expression in and/or regulation
of lipid metabolism (rs17714824 [EBF1, FABP6], rs33947258 [PCDH1], rs12190945 [ME1],
rs78940216 [DPYSLS], rs17075255 [MAT2B], rs11608727 [MVK]) and protein and/or glucose
metabolism (rs6975898 [FOXK1], rs11209780 [NEGR1], rs57221424 [DPY19L2], rs6079589
[MACROD2]). SNPs associated with raw vegetable intake were specifically associated
with gastrointestinal diseases (rs11125813 [ARMH3] for Crohn’s disease, rs4281874 [MVK]
for gastrointestinal dismay), while one SNP associated with cooked vegetable intake was
associated with tooth development (rs10161952 [PHHF2]). All of these may contribute
to an individual’s dietary preference and eventually influence their food consumption
(Supplementary Table S2).

The magnitude of the associations between the SNPs and vegetable intake was ex-
tracted from the GWAS conducted by Canela-Xandri et al. [22], as this GWAS had a larger
sample size and was adjusted for more covariates. It was performed in 452,264 unrelated
individuals of European ancestry, and adjusted for sex, age, age square, array batch, as-
sessment center, and the leading 20 genetic principle components. The strength of the
genetic instruments was evaluated using the F-statistic, with F-statistic > 10 suggesting
good instrument strength [25]. The process of SNP selection and the characteristics of these
SNPs are shown in Supplementary Figure S1 and Table S1.

2.2. One-Sample MR
2.2.1. Data Source

We used individual-level data from UK Biobank participants for one-sample MR. The
UK Biobank is a population-based prospective cohort that recruited a half-million partici-
pants aged 40–69 years between 2006 and 2010 across England, Wales, and Scotland [26]. At
baseline, participants completed a touchscreen questionnaire that collected information on
socioeconomic status, health status, medication use, lifestyle, and environmental exposures.
Anthropometric and physical traits were measured; blood, urine, and saliva samples were
collected [26]. Genotypes in the UK Biobank were assayed using the Affymetrix UKBiLEVE
Axiom array® for about 50,000 participants and the UK Biobank Axiom array® for about
440,000 participants. Genetic pre-imputation quality control (QC), phasing, and imputation
of genetic data in the UK Biobank have been described elsewhere [27].

http://www.phenoscanner.medschl.cam.ac.uk/
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In this analysis, we excluded participants if they (1) did not have individual genotype
array data, (2) withdrew from the cohort, (3) did not pass genetic QC, or (4) did not have
vegetable intake data. In genetic QC, we excluded participants if (1) the self-reported sex
was different from the genetic sex, (2) the sex chromosome karyotypes were putatively
different from XX or XY, (3) there were outliers in heterozygosity and missing rates, indi-
cating the sample genotypes were of poor quality, (4) they were of non-European genetic
ethnicity, and (5) genetic relatedness was found with other participants in the UK Biobank
(Supplementary Figure S2).

The health status of participants was followed-up via linkage to national death reg-
istries (NHS Digital for participants in England and Wales; and NHS Central Registry for
participants in Scotland) and hospitalization databases (the National Health Service [NHS]
Hospital Episode Statistics for participants in England; the Scottish Morbidity Record for
participants in Scotland; and the Patient Episode Database for participants in Wales). At
the time of this study, the death registries captured records through 28 February 2021, and
the hospitalization databases captured records through 31 March 2021 for participants from
England and Scotland and 28 February 2018 for participants from Wales. Diagnosis of
cardiovascular outcomes was ascertained by mapping relevant codes from the International
Classification of Disease (ICD) versions 9 and 10 in the death registry and hospitalization
records. We used the following ICD 10 codes: I21-I25 for CHD; I60-I61 and I63-I64 for
stroke; I63-I64 for ischemic stroke; I50, I11.0, I13.0, and I13.2 for heart failure (HF); and I48
for atrial fibrillation (AF). The equivalent ICD-9 codes used are shown in Supplementary
Table S3.

2.2.2. Statistical Analysis

Unweighted polygenic risk scores (PRSs) for cooked and raw vegetable intake were
calculated by summing the number of vegetable intake-increasing alleles carried by a
participant and dividing it by the total number of SNPs. We estimated the associations
between PRSs and population baseline characteristics by fitting linear regressions of PRSs
on the baseline characteristics (age, sex, body mass index, physical activity, alcohol drinking,
smoking, systolic blood pressure, diastolic blood pressure, red meat intake, processed meat
intake, and oily fish intake), and using the p-value for the overall model fit as the p-value
for the potential association.

MR estimates were obtained using the two-stage least square method, in which two
regressions were fitted. In the first stage, we fitted a multivariate linear regression model of
the two PRSs on cooked and raw vegetable intake for participants without cardiovascular
diseases (non-cases), adjusted for sex, age, age square, assessment center, genotype batch,
and the first 20 genetic principal components [28,29]. From this first-stage regression, we
obtained the genetically predicted cooked and raw vegetable intake. In the second stage,
we fitted a logistic regression model of the genetically predicted cooked and raw vegetable
intake on the outcomes, adjusted for the same covariates as in the first-stage regression.

For sensitivity analysis, we fitted a Cox model in the second stage after excluding
participants with CVDs at recruitment. More details are shown in the Supplementary
methods. As secondary analysis, we performed univariable one-sample MR analysis
for cooked and raw vegetable intake separately, using a similar two-stage least square
method. In the first stage, we fitted a linear model for vegetable intake and obtained the
genetically predicted values; in the second stage, a logistic regression of the predicted
vegetable intake was fitted on the outcomes. The same covariates were adjusted as in the
multivariable analysis.

2.3. Two-Sample MR
2.3.1. Data Source

For two-sample MR, we used summary-level GWAS statistics from the CARDIoGRAM-
plusC4D consortium for CHD (with 60,801 cases) [30], the MEGASTROKE consortium for
stroke and ischemic stroke (with 40,585 and 34,217 cases, respectively) [31], the HERMES
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consortium for heart failure (with 47,309 cases) [32], and the Nielson 2018 study for atrial
fibrillation (with 60,662 cases) [33]. For replication, we used the summary-level GWAS data
of the five cardiovascular outcomes from the FinnGen consortium (release 5) [34], using
the following FinnGen endpoint codes: “I9_CHD” for CHD, “I9_STR_SAH” for stroke,
“I9_STR_EXH” for ischemic stroke, “I9_HEARTFAIL_NS” for HF, and “I9_AF” for AF, re-
spectively. All of these GWAS were performed in unrelated individuals of predominantly
European ancestry. The CARDIoGRAMplusC4D, MEGASTROKE, and FinnGen consortia
had no sample overlap with the UK Biobank, while the HERMES consortium and Nielson
2018 study had 40% and 38% sample overlap with the UK Biobank, respectively. The basic
characteristics of these GWAS are shown in Supplementary Table S1.

2.3.2. Statistical Analysis

In multivariable two-sample MR, we included 43 (15 + 28) SNPs but further removed
three duplicate SNPs. The remaining 40 SNPs were not in linkage disequilibrium. The
associations of each SNP with cooked and raw vegetable intake were extracted from
the GWAS conducted by Canela-Xandri et al. [22] (Supplementary Table S4), while the
associations with the outcomes were extracted from the relevant outcome GWAS data. For
the SNPs that could not be matched to outcomes in the GWAS, we first tried to identify
proper proxy SNPs in linkage disequilibrium (r2 > 0.80, distance < 500 kb); if no proper
proxy was identified, the unmatched SNPs were removed from further analysis. Finally,
39 SNPs were used in the analysis of the FinnGen-derived GWAS data (rs11608727 was not
matched); otherwise, all 40 SNPs were used.

Summary-level association statistics for each SNP were orientated across different
GWAS so that their effect estimates were aligned on the same alleles [35]. The inverse
variance-weighted method was performed to estimate the associations between vegetable
intake and the outcomes [36].

As secondary analysis, we performed univariable two-sample MR, in which 15 and
28 SNPs were used for cooked and raw vegetable intake, respectively. We used the in-
verse variance-weighted method, while sensitivity analyses were performed using alterna-
tive approaches, including the weighted median and MR-Egger methods. The weighted
median method can generate reliable effect estimates when at least 50% of SNPs are
valid instruments [37]. The MR-Egger method can detect and correct for possible di-
rectional pleiotropy [37]. Pleiotropy was examined using the MR-Egger intercept test,
with a p-value < 0.05 suggesting the presence of directional pleiotropy, in which case the
MR-PRESSO method [38] was used to examine the effect of pleiotropy. The MR-PRESSO
method can detect outlier SNPs and provide effect estimates after removing outliers.

2.4. Meta-Analysis

We combined the two-sample and one-sample MR estimates via meta-analysis for
separate univariable and multivariable MR. A random effects model was used for the
primary analysis, while a fixed effects model was used for the sensitivity analysis. The I2

statistic was calculated to quantify heterogeneity, with I2 > 50% indicating the presence
of high heterogeneity. Since the HERMES consortium and Nielson 2018 study had sam-
ple overlap with the UK Biobank, and one-sample MR estimation tends to overestimate
associations [39], we performed a sensitivity meta-analysis by excluding the one-sample
MR estimates.

The effects were quantified using the odds ratio (OR) and its 95% confidence interval
(CI), reflecting risk change in the outcome for a lifelong increase in vegetable intake of one
daily serving. Bonferroni correction was applied to control multiple comparisons for two
exposures and five outcomes, α = 0.05/(2 × 5) = 0.005. The statistical tests were two-sided,
with a p-value < 0.005 considered as a conservative level of statistical significance, and a
p-value between 0.005 and 0.05 considered as suggestive evidence.
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2.5. Cardiometabolic Risk Factors for Exploratory Mechanisms

We performed two-sample MR on cardiometabolic risk factors to explore potential
mechanisms. SNPs that were biologically associated with the metabolism of lipids, glucose,
or protein were further removed, leaving 9 and 19 SNPs for cooked and raw vegetable
intake, which explained 0.5% and 2.3% of phenotypic variance, respectively. The outcomes
of interest included total cholesterol (TC, mg/dL), total triglyceride (TG, mg/dL), low-
density lipoprotein cholesterol (LDL, mg/dL), high-density lipoprotein cholesterol (HDL,
mg/dL), body mass index (BMI, kg/m2), systolic blood pressure (SBP, mmHg), diastolic
blood pressure (DBP, mmHg), pulse pressure (PP, the difference between SBP and DBP,
mmHg), fasting insulin (FI, pmol/L), fasting glucose (FG, mmol/L), glycated hemoglobin
(HbA1c, %) and 2-hour glucose after oral glucose tolerance test (OGTT, mmol/L).

We used the summary-level GWAS statistics from the Global Lipids Genetics Consor-
tium (GLGC) for lipids-related outcomes (TC, TG, LDL, HDL) [40], Locke 2015 for BMI [41],
the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycemic
traits (FG, FI, OGTT, HbA1c) [42], and the International Consortium of Blood Pressure
(ICBP) for blood pressure measures (SBP, DBP, PP) [43], respectively. These GWAS had no
sample overlap with the UK Biobank. All of these GWAS were conducted in unrelated
individuals of European ancestry, and adjusted for sex, age, age square, genetic principle
components, and other study-specific covariates. More details on these GWAS are sum-
marized in Supplementary Table S1. Briefly, GLGC [40] included 188,578 individuals who
were not on lipid-lowering treatment, and blood lipid levels were measured after >8 h of
fasting. The Locke 2015 GWAS [41] included 339,224 individuals. MAGIC [42] included
200,622, 151,013, 63,396, and 146,806 individuals for analyses of FG, FI, OGTT, and HbA1c,
respectively. FI was natural log-transformed. Participants in MAGIC were excluded if they
had a diagnosis of diabetes, were on anti-diabetic medication, or had abnormal glycemic or
insulin levels (FG > 7 mmol/L, OGTT > 11.1 mmol/L, HbA1c > 6.5%). ICBP [43] included
150,134 individuals. BMI was additionally adjusted for in the GWAS of FG, FI, OGTT,
SBP, DBP, and PP. We performed univariable and multivariable MR using the inverse
variance-weighted method for primary analysis, while the median-based and MR-Egger
methods were used for sensitivity analyses.

All analyses were performed in R (version 4.1.1) using the “MendelianRandomiza-
tion” package (version 0.5.1), “MR-PRESSO” package (version 1.0), and “meta” package
(version 5.0-1).

3. Results

The average F-statistic values were 29 (range 18 to 48) for the SNPs associated with
cooked vegetable intake and 30 (range 18 to 46) for the SNPs associated with raw vegetable
intake, respectively, suggesting good instrument strength (Table 1).

3.1. One-Sample MR

In one-sample MR, 361,797 UK Biobank participants were included, with 37,014 cases
of CHD, 9298 cases of stroke, 7264 cases of ischemic stroke, 11,773 cases of HF, and
25,915 cases of AF recorded during 12.1 years of follow up. The mean age was 56.9
(standard deviation (SD) 7.9) years and 55.0% were women. The mean values of cooked
and raw vegetable intake were 2.74 (1.77) and 2.19 (1.98) heaped tablespoons per day,
respectively (Supplementary Table S5). The correlation between cooked and raw vegetable
intake was low (Pearson correlation coefficient = 0.30). The mean PRSs for cooked and raw
vegetable intake were 1.10 (0.16) and 1.06 (0.12), respectively (Supplementary Figure S3).
PRSs were strongly associated with actual vegetable intake (p < 2 × 10−16) and not associ-
ated with age, sex, body mass index, physical activity, smoking, drinking, blood pressure,
red meat intake, or processed meat intake (Supplementary Table S6). The F-statistic values
for the cooked and raw vegetable intake PRSs were 67 (range 62 to 70) and 314 (range 289
to 322), respectively (Supplementary Table S7).
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Table 1. Characteristics of the SNPs associated with cooked and raw vegetable intake.

SNPs Chromo-
Some Position Effect Allele Other Allele Effect Allele

Frequency Beta Standard
Error p-Value F-Statistic Nearest Gene

Cooked vegetable intake
rs1534749 1 190028576 C T 0.470 −0.017 0.003 2.15 × 10−7 26.895 BRINP3
rs3001363 1 154125067 T C 0.489 −0.018 0.003 2.68 × 10−8 30.929 NUP210L

rs113993820 2 102766634 T G 0.019 −0.061 0.012 3.53 × 10−7 25.939 IL1R1
rs2102738 2 172525884 C A 0.172 −0.023 0.004 1.15 × 10−7 28.098 DYNC1I2
rs442291 2 79676305 C T 0.389 0.023 0.003 4.03 × 10−12 48.113 CTNNA2

rs17653477 3 71170319 G A 0.031 −0.046 0.009 1.31 × 10−6 23.415 FOXP1
rs10020708 4 178097496 A C 0.494 −0.015 0.003 2.52 × 10−6 22.156 NEIL3
rs17714824 5 158254070 T G 0.175 0.024 0.004 1.36 × 10−8 32.245 EBF1, FABP6
rs33947258 5 141194870 A C 0.261 0.023 0.004 5.01 × 10−10 38.673 PCDH1
rs12190945 6 84162042 G A 0.296 −0.015 0.004 2.46 × 10−5 17.791 ME1
rs6975898 7 4540687 G T 0.376 −0.017 0.003 5.61 × 10−7 25.044 FOXK1
rs11995369 8 89649177 C T 0.202 0.023 0.004 2.40 × 10−8 31.142 MMP16
rs10156602 9 96345328 G A 0.362 0.020 0.003 4.66 × 10−9 34.329 PHF2
rs10161952 13 59474383 C A 0.313 −0.017 0.004 2.60 × 10−6 22.093 DIAPH3
rs6420335 13 69556727 G C 0.467 −0.018 0.003 3.07 × 10−8 30.665 KLHL1

Raw vegetable intake
rs11209780 1 71876652 A G 0.216 −0.025 0.005 1.33 × 10−7 27.821 NEGR1
rs3001363 1 154125067 T C 0.489 −0.025 0.004 9.01 × 10−11 42.028 NUP210L
rs3828120 1 82434387 A T 0.328 0.023 0.004 1.20 × 10−8 32.494 ADGRL2
rs11125813 2 59991047 A G 0.219 0.023 0.005 7.26 × 10−7 24.546 BCL11A
rs4281874 2 176451226 T C 0.265 0.023 0.004 1.14 × 10−7 28.127 LNPK
rs442291 2 79676305 C T 0.389 0.023 0.004 2.49 × 10−9 35.549 CTNNA2

rs78940216 2 27153318 A G 0.111 −0.030 0.006 9.70 × 10−7 23.988 DPYSL5
rs12630752 3 44303185 G A 0.234 −0.023 0.005 3.73 × 10−7 25.829 TOPAZ1
rs17075255 5 164759108 T C 0.234 −0.028 0.005 6.98 × 10−10 38.027 MAT2B
rs2915858 5 166542621 G A 0.432 0.022 0.004 8.80 × 10−9 33.092 TENM2
rs62380935 5 137723585 G A 0.215 0.026 0.005 3.44 × 10−8 30.442 KDM3B
rs9359954 6 92318594 G T 0.479 0.017 0.004 5.93 × 10−6 20.509 MAP3K7
rs57221424 7 35215670 G C 0.322 0.024 0.004 3.28 × 10−9 35.011 DPY19L2
rs6958768 7 77773693 C A 0.167 −0.026 0.005 6.78 × 10−7 24.677 MAGI2
rs13255011 8 35051793 T C 0.479 0.021 0.004 6.54 × 10−8 29.197 UNC5D
rs13267577 8 4847469 T C 0.381 −0.024 0.004 1.05 × 10−9 37.239 CSMD1
rs1520919 8 64696606 A G 0.299 −0.026 0.004 7.55 × 10−10 37.873 YTHDF3
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Table 1. Cont.

SNPs Chromo-
Some Position Effect Allele Other Allele Effect Allele

Frequency Beta Standard
Error p-Value F-Statistic Nearest Gene

rs687135 9 37257202 T C 0.454 −0.021 0.004 3.55 × 10−8 30.386 ZCCHC7
rs7857380 9 128555022 C A 0.365 −0.027 0.004 1.26 × 10−11 45.877 PBX3
rs67497633 10 103815495 A G 0.169 0.029 0.005 1.69 × 10−8 31.827 ARMH3
rs11608727 12 110060984 G T 0.196 −0.026 0.005 6.77 × 10−8 29.131 MVK
rs10161952 13 59474383 C A 0.313 −0.021 0.004 1.95 × 10−7 27.082 DIAPH3
rs77797947 13 56160164 A C 0.033 0.051 0.012 9.28 × 10−6 19.655 PRR20A
rs9323534 14 20586432 T C 0.433 −0.022 0.004 2.00 × 10−8 31.493 OR4K17
rs1437761 15 97010698 C T 0.249 −0.023 0.004 1.13 × 10−7 28.132 NR2F2
rs956362 15 35927655 G A 0.212 0.020 0.005 2.40 × 10−5 17.841 DPH6

rs2447090 17 2298974 G A 0.361 −0.018 0.004 4.81 × 10−6 20.911 MNT
rs6079589 20 14850762 T C 0.218 −0.025 0.005 3.09 × 10−8 30.652 MACROD2

The associations between the SNPs and vegetable intake were obtained from the GWAS conducted by Canela-Xandri et al. (2018) [22]. SNP: single nucleotide polymorphism. The
15 eligible SNPs associated with cooked vegetable intake explained 0.8% of phenotypic variance, while the 28 SNPs associated with raw vegetable intake explained 2.4% of phenotypic
variance. Information on nearest gene, relevant functions, and enrichment are obtained from the Ensembl database (http://www.ensembl.org/Homo_sapiens/Info/Index, accessed on
15 July 2023), FIVEx database (https://fivex.sph.umich.edu/, accessed on 15 July 2023), GTExPortal database (https://gtexportal.org/home/, accessed on 15 July 2023), and GeneCards
database (https://www.genecards.org/, accessed on 15 July 2023).

http://www.ensembl.org/Homo_sapiens/Info/Index
https://fivex.sph.umich.edu/
https://gtexportal.org/home/
https://www.genecards.org/
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In multivariable one-sample analysis, we did not find significant evidence for as-
sociations between genetically predicted vegetable intake and cardiovascular outcomes
(Figure 2). Univariable analyses and subsequent sensitivity analyses also generated non-
significant evidence for associations (Supplementary Tables S7 and S8).

Figure 2. Associations between genetically predicted vegetable intake and cardiovascular risk
in meta-analysis of two- and one-sample multivariable Mendelian randomization. OR (95%CI):
odds ratio (95% confidence interval). MR estimates in the UK Biobank were obtained from one-
sample analysis, otherwise two-sample analysis. UKB: UK Biobank. CARDIoGRAMplusC4D:
Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus The Coronary Artery
Disease Genetics) consortium. MEGASTROKE: MEGASTROKE consortium. HERMES: HEart failure
Molecular Epidemiology for therapeutic targetS consortium.

3.2. Two Sample MR

In multivariable two-sample MR analysis mutually adjusted for cooked and raw
vegetable intake, we observed null evidence for associations between raw vegetable intake
and CHD, stroke, ischemic stroke, and HF, consistent across different data sources (Figure 2).
The univariable analysis showed similarly null evidence for most of the associations
(Supplementary Table S9).

The potential presence of directional pleiotropy was found in cooked vegetable intake
and ischemic stroke in FinnGen (p-value for MR-Egger intercept = 0.05) and the association
between raw vegetable intake and AF in FinnGen (p-value for MR-Egger intercept = 0.01).
However, MR-PRESSO analysis detected zero and one outlier SNP (rs62380935), respec-
tively, and removing the outlier yielded very similar results. The weighted median method
generated consistent results with the inverse variance-weighted estimates (Supplementary
Table S9).

3.3. Meta-Analysis

Meta-analysis of the two-sample and one-sample multivariable MR estimates revealed
suggestive evidence for an inverse association between genetically predicted raw vegetable
intake and stroke (OR (95%CI): 0.82 (0.69, 0.98), p = 0.03), but it failed to pass the Bonferroni-
corrected significance level (0.005). The associations of raw vegetable intake with other
CVD outcomes were directionally inverse (except AF): CHD (0.86 (0.72, 1.02), p = 0.08),
ischemic stroke (0.85 (0.71, 1.03), p = 0.10), and HF (0.88 (0.73, 1.05), p = 0.15) (Figure 2).
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Sensitivity analysis by excluding the one-sample estimate from the UK Biobank consistently
showed suggestive evidence for an association between raw vegetable intake and stroke
risk (0.79 (0.66, 0.95), p = 0.01) (Supplementary Table S10). Meta-analysis of univariable
estimates showed nonsignificant evidence for associations between raw vegetable intake
with the outcomes (Supplementary Table S11, Supplementary Figure S4). We did not find
significant evidence for associations between cooked vegetable intake and CVDs. There
was no evidence of heterogeneity in the meta-analysis; the fixed and random effects models
produced similar results.

3.4. Cardiometabolic Risk Factors for Exploratory Mechanisms

Nine and 19 SNPs were included in this analysis, with average F-statistic values of
30 and 29 for SNPs of cooked and raw vegetable intake, respectively, suggesting good
instrument strength (Supplementary Table S12). Univariable and multivariable MR showed
similar results (Supplementary Tables S13 and S14, Supplementary Figure S5). Overall, in
the primary multivariable MR using the inverse variance-weighted method, genetically
determined vegetable intake was not associated with serum lipids, BMI, glycemic traits, or
BP (Figure 3, Supplementary Table S14). For each one serving increase in cooked vegetable
intake, the beta-values (95%CI) for TC, BMI, FG, and SBP were −0.06 (−0.30, 0.18; p = 0.62),
−0.18 (−0.41, 0.05; p = 0.13), 0.01 (−0.11, 0.13; p = 0.84), and −2.43 (−6.36, 1.49; p = 0.23),
respectively. For each serving increase in raw vegetable intake, the beta-values (95%CI)
for TC, BMI, FG, and SBP were −0.02(−0.20, 0.16; p = 0.84), 0.12 (−0.05, 0.29; p = 0.15),
0.03 (−0.06, 0.11; p = 0.56), and 0.94 (−1.91, 3.78; p = 0.52), respectively. A suggestive
association between raw vegetable intake and reduced OGTT was observed (−0.33 [−0.64,
−0.01; p = 0.04]), but it did not pass Bonferroni correction. The MR-Egger and median-
based methods showed similar results of null associations, and the MR-Egger intercept test
suggested no evidence of horizontal pleiotropy (Supplementary Table S14).
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Figure 3. Associations between genetically predicted vegetable intake and serum lipids, BMI,
glycemic traits, and blood pressure in multivariable Mendelian randomization. (A) Serum lipids,
BMI and glycemic traits; (B) Blood pressure. TC: total cholesterol, mg/dL. TG: triglyceride, mg/dL.
HDL: high-density lipoprotein, mg/dL. LDL: low-density lipoprotein, mg/dL. BMI: body mass
index, kg/m2. OGTT: 2-hour glucose after oral glucose tolerance test, mmol/L. FG: fasting glucose,
mmol/L. FI: fasting insulin, mmol/L. HbA1c: glycated hemoglobin, %. SBP: systolic blood pressure,
mmHg. DBP: diastolic blood pressure, mmHg. PP: pulse pressure, mmHg.
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HDL: high-density lipoprotein, mg/dL. LDL: low-density lipoprotein, mg/dL. BMI: body mass
index, kg/m2. OGTT: 2-hour glucose after oral glucose tolerance test, mmol/L. FG: fasting glucose,
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Figure 3. Associations between genetically predicted vegetable intake and serum lipids, BMI,
glycemic traits, and blood pressure in multivariable Mendelian randomization. (A) Serum lipids,
BMI and glycemic traits; (B) Blood pressure. TC: total cholesterol, mg/dL. TG: triglyceride, mg/dL.
HDL: high-density lipoprotein, mg/dL. LDL: low-density lipoprotein, mg/dL. BMI: body mass
index, kg/m2. OGTT: 2-hour glucose after oral glucose tolerance test, mmol/L. FG: fasting glucose,
mmol/L. FI: fasting insulin, mmol/L. HbA1c: glycated hemoglobin, %. SBP: systolic blood pressure,
mmHg. DBP: diastolic blood pressure, mmHg. PP: pulse pressure, mmHg.

4. Discussion

This MR analysis of 1.2 million participants generally demonstrated overall null
evidence for associations between genetically predicted vegetable intake with CHD, HF, and
AF. Mechanism analyses provided further null evidence for associations with cardiometabolic
risk factors, including serum lipids, BMI, blood pressure, and glycemic measures.

Previous meta-analyses of cohort studies have found that higher vegetable intake was
associated with reduced CVD risks [10,11]. However, causal inference has been difficult
because residual confounding is ubiquitous in observational research, while randomized
controlled trials with large sample size and long follow-up times for capturing clinical
outcomes have been sparse and inconclusive [44,45]. The findings in this MR study seem
contradictory to observational evidence, and residual confounding is likely to be one of the
reasons [16,46]. A previous analysis of 400,000 UK Biobank participants [16] estimated that
residual confounding accounted for about 80–90% of the observational associations between
vegetable intake and CVD outcomes, and this percentage was likely to be higher providing
further adjustment for unobserved confounders and/or more accurate measurement of the
confounders. Although MR has been regarded as a promising approach in causal inference,
its validity depends on some underlying assumptions. First, that the instrumental variables
are associated with at least one of the exposure variables. Second, that there are no
unmeasured confounders of the associations between genetic variants and outcomes. Third,
that the genetic variants affect the outcomes only through their effect on the exposure of
interest [47].

For the first assumption, we selected the SNPs that were associated with cooked or
raw vegetable intake at a genome-wide association level in three GWAS. The PRSs in one-
sample MR were highly associated with the observed phenotypes (p < 2 × 10−16). High
F-statistic values also indicated their high strength as instrument variables. Additionally,
a number of the selected SNPs were biologically associated with vegetable intake via
their regulatory effect on olfactory receptors, gastrointestinal health, tooth health, and
metabolism of lipids/protein/glucose.

For the second assumption, we searched the Phenoscanner v2 database for any pheno-
types associated with the SNPs, and excluded the SNPs that were associated with potential
confounders, including alcohol drinking, smoking, blood pressure, and adiposity. In one-
sample MR, the PRSs were not associated with common cardiovascular risk factors, such as
alcohol drinking, smoking, physical activity, blood pressure, obesity, red meat intake, and
processed meat intake. Although the PRSs were associated with oily fish intake, adjustment
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for it in the two-stage least square analysis did not change the results (Supplementary
Table S7). For the third assumption, the MR-Egger intercept test did not show strong
evidence of directional pleiotropy for most of the analyses; MR-PRESSO analysis generated
similar results to the primary inverse variance-weighted estimates. Sensitivity analyses us-
ing the median-based and MR-Egger methods also generated consistent results. Therefore,
the three assumptions were plausibly satisfied in our study.

Nevertheless, completely excluding the possibility of true associations between veg-
etable intake and CVDs is unlikely based on the null evidence in this study. Selecting
appropriate genetic instruments for exposure is difficult [19,48]. Firstly, the genetic ar-
chitecture of consuming vegetables, as a behavior, is not fully understood. Although we
have discovered some selected SNPs associated with traits that may determine vegetable
intake, the biological functions of other SNPs remain unclear. Secondly, the phenotypic
variance explained by the SNPs was small (0.8% for cooked vegetable intake and 2.4%
for raw vegetable intake), which must be acknowledged, even though it is common for
behavioral traits.

Dietary-derived antioxidants, especially vitamin C, vitamin E, retinol, carotene, and
lycopene, have been proposed as the major mechanisms for the observational protective
effects [49] and are valid biomarkers reflecting vegetable consumption level [50]. Prior MR
studies on these antioxidants showed similar null associations. Kobylecki et al. used one
SNP, rs33972313, in the SLC23A1 gene region, which encodes sodium-dependent vitamin C
transporter 1, as the genetic instrument for serum vitamin C, and reported that vitamin C
was not associated with incident CHD nor all-cause mortality in a cohort of 100,000 Danish
participants [51]. Zhu et al., using 9 SNPs associated with serum circulating vitamin C,
further found null genetic associations with a range of cardiovascular risk factors and
diseases, including CHD, stroke, HF, AF, blood pressure, obesity, and serum lipids [52].
Luo et al. investigated five antioxidants, i.e., vitamin C, vitamin E, retinol, carotene, and
lycopene, in both absolute circulating levels and relative metabolite levels, and found null
evidence for any associations with incident CHD [53]. Similarly, Martens et al. found
that the five antioxidants were not associated with stroke [54]. However, these studies
focused on a single nutrient and ignored the potential additive and synergistic effects
of various antioxidants, as well as those between antioxidants and minerals, fiber, and
other phytochemicals, which could be a more plausible mechanism for CVD risk reduction
due to increased vegetable intake [49,55]. Therefore, future research is required for causal
inference and mechanism investigation.

Extra caution should be taken when interpreting the findings. The MR estimates reflect
the lifetime risk change in the outcomes due to solely increasing vegetable intake by one
daily serving, while all other risk factors remain unchanged [56]. It is assumed that all
other risk factors for CVDs are fixed, including socioeconomic, lifestyle, and other dietary
factors. However, diet is always complex, characterized by the intake of many different
kinds of food and substitutions between them, where high consumption of vegetables is
associated with lower intake of other food given the relative stability of an individual’s
calorie intake [57,58]. The general population should be cautious about replacing different
kinds of food items, but this is beyond the scope of our study and warrants future research
on dietary patterns that describe the overall diet.

We observed a potential inverse association between raw vegetable intake and in-
cident stroke, which passed the conventional significance level (0.05) but failed to pass
the Bonferroni-corrected significance level (0.01). This is in line with a previous study of
20,000 individuals [59]. If this association is a true effect, this may indicate potentially
different health effects of cooked and raw vegetables on stroke, which has been suggested
in previous observational studies [12,14]. Nevertheless, this remains unclear and requires
future research.

This study had some limitations. First, the biological mechanisms behind the SNPs
and vegetable-eating behavior are not completely understood. Second, although we differ-
entiated cooked and raw vegetable intake in this study, these phenotypes are still a mix of
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different vegetable kinds and cooking methods (for cooked vegetables). It may be valuable
to further differentiate vegetable kinds and cooking methods in future studies. Third,
the dietary intake was measured in the UK biobank, a cohort based on England, Wales,
and Scotland, so the findings may be more generalizable to populations that consume
similar types of vegetables (e.g., carrots, broccoli, spinach, peppers) and use similar cooking
methods. Fourth, vegetable intake was measured using a self-reporting questionnaire in
the UK Biobank. It was not directly validated against biomarkers, although comparison
to 24-h recall assessment showed good agreement. Fifth, our analysis was confined to a
population of European ancestry, which reduced population stratification bias but may
limit its generalizability to populations of other ethnicities. Sixth, our one-sample estimates
may be vulnerable to “winner’s curse” as the UK Biobank was used for both selecting the
SNPs and estimating the associations of interest, which may bias the one-sample estimates
towards the null; however, the two-sample MR estimates generated consistent results, so
the potential effect of “winner’s curse” on our overall estimate should be minor.

5. Conclusions

We performed MR analyses and their meta-analysis, and found null evidence for
associations between genetically predicted cooked and raw vegetable intake with CHD, AF,
HF, and a range of cardiometabolic risk factors, but we observed potential evidence for an
inverse association between raw vegetable intake and risk of stroke. The possibility of true
associations between vegetable intake and CVDs cannot be completely ruled out because
of the difficulty in identifying statistically and biologically plausible genetic proxies for
dietary factors. More investigation is warranted for causal inference in nutritional research.
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