195 research outputs found

    Disease spread through animal movements: a static and temporal network analysis of pig trade in Germany

    Full text link
    Background: Animal trade plays an important role for the spread of infectious diseases in livestock populations. As a case study, we consider pig trade in Germany, where trade actors (agricultural premises) form a complex network. The central question is how infectious diseases can potentially spread within the system of trade contacts. We address this question by analyzing the underlying network of animal movements. Methodology/Findings: The considered pig trade dataset spans several years and is analyzed with respect to its potential to spread infectious diseases. Focusing on measurements of network-topological properties, we avoid the usage of external parameters, since these properties are independent of specific pathogens. They are on the contrary of great importance for understanding any general spreading process on this particular network. We analyze the system using different network models, which include varying amounts of information: (i) static network, (ii) network as a time series of uncorrelated snapshots, (iii) temporal network, where causality is explicitly taken into account. Findings: Our approach provides a general framework for a topological-temporal characterization of livestock trade networks. We find that a static network view captures many relevant aspects of the trade system, and premises can be classified into two clearly defined risk classes. Moreover, our results allow for an efficient allocation strategy for intervention measures using centrality measures. Data on trade volume does barely alter the results and is therefore of secondary importance. Although a static network description yields useful results, the temporal resolution of data plays an outstanding role for an in-depth understanding of spreading processes. This applies in particular for an accurate calculation of the maximum outbreak size.Comment: main text 33 pages, 17 figures, supporting information 7 pages, 7 figure

    Assessing the occurrence of the novel zoonotic variegated squirrel bornavirus 1 in captive squirrels in Germany —A prevalence study

    Get PDF
    The newly described zoonotic variegated squirrel bornavirus 1 (VSBV‐1) in German squirrel holdings has been associated with the death of three private owners and one zoo animal caretaker (confirmed cases). Epidemiological investigations were severely impeded by the general lack of data on holdings of the putative reservoir hosts, the family Sciuridae. To fill this lack of data for detailed epidemiological investigations of the captive squirrel population, a register of private and zoological squirrel holdings was established. The findings show a broad variety of kept species and their frequency distribution. By contacting the different stakeholders via Web‐based social groups and societies, information passed in both directions so that disease awareness could be raised and participants could be recruited for further studies. Cross‐sectional studies revealed a prevalence of VSBV‐1‐positive subpopulations of 0% (95% CI 0%–6.2%) among private squirrel collections and 1.9% (95% CI: 0%–9.9%) among zoos in Germany. The approach presented here can be transferred to other populations of non‐traditional pets, which may be equally difficult to monitor, in the case of an emerging zoonotic infectious disease.Peer Reviewe

    Epidemiology of Bluetongue Virus Serotype 8, Germany

    Get PDF
    In Germany, bluetongue disease had not been reported before 2006. During August 2006–August 2008, >24,000 bluetongue virus serotype 8 infections were reported, most (20,635) in 2007. In 2006 and 2007, respectively, case-fatality rates were 6.4% and 13.1% for cattle and 37.5% and 41.5% for sheep. Vaccination in 2008 decreased cases

    An epidemiological and economic simulation model to evaluate strategies for the control of bovine virus diarrhea in Germany

    Get PDF
    Models can be used to plan, evaluate, and improve programs for animal disease control. In Germany, a nationwide compulsory program to eradicate Bovine viral diarrhea (BVD) is in force since January 2011. As it is associated with substantial expenditures, the program is currently under revision. To provide the basis for a science-based decision on the future course of BVD control in Germany, we evaluated 13 scenarios (sc1-13) with respect to the chance of reaching freedom from disease and their economic implications for a period of 20 years (2011–2030). To simulate the impact of different control strategies on disease dynamics, a disease spread model was developed. To estimate the effects of a transient infection (TI) on animal level, a gross margin analysis was performed. To assess the value of cattle that died prematurely, a valuation model was used. Finally, an economic model was developed to perform a cost-benefit analysis and to compare each control scenario with a baseline setting with no BVD control. Costs comprised the expenditures for diagnostics, vaccination, preventive culling, and trade restrictions. Benefits were animal and production losses avoided by having control measures in place. The results show that reducing the PI prevalence on animal level to 0% is only feasible in scenarios that combine antigen or antibody testing with compulsory vaccination. All other scenarios, i.e., those based exclusively on a “test and cull” approach, including the current control program, will, according to the model, not achieve freedom of BVD by 2030. On the other hand, none of the scenarios that may lead to complete BVD eradication is economically attractive [benefit-cost ratio (BCR) between 0.64 and 0.94]. The average direct costs of BVD in Germany are estimated at 113 million Euros per year (34–402 million Euros), corresponding to 28.3 million Euros per million animals. Only the concepts of the former and the current national BVD control program (“ear tag testing and culling”) may reduce the BVD prevalence to 0.01% with an acceptable BCR (net present value of 222 and 238 million Euros, respectively, with a BCR of 1.22 and 1.24)

    Does having a cat in your house increase your risk of catching COVID-19?

    Get PDF
    [EN]Due to the zoonotic origin of SARS-Coronavirus 2 (SARS-CoV-2), the potential for its transmission from humans back to animals and the possibility that it might establish ongoing infection pathways in other animal species has been discussed. Cats are highly susceptible to SARS-CoV-2 and were shown experimentally to transmit the virus to other cats. Infection of cats has been widely reported. Domestic cats in COVID-19-positive households could therefore be a part of a human to animal to human transmission pathway. Here, we report the results of a qualitative risk assessment focusing on the potential of cat to human transmission in such settings. The assessment was based on evidence available by October 2021. After the introduction of SARS-CoV-2 to a household by a human, cats may become infected and infected cats may pose an additional infection risk for other members of the household. In order to assess this additional risk qualitatively, expert opinion was elicited within the framework of a modified Delphi procedure. The conclusion was that the additional risk of infection of an additional person in a household associated with keeping a domestic cat is very low to negligible, depending on the intensity of cat-to-human interactions. The separation of cats from humans suffering from SARS-CoV-2 infection should contribute to preventing further transmission.SIThis work was funded by the German Federal Ministry of Education and Research within the COVMon Project, being part of the InfectControl2020 Initiative (BMBF grant no. 03COV16D)
    • 

    corecore