294 research outputs found
Foray search: An effective systematic dispersal strategy in fragmented landscapes
In the absence of evidence to the contrary, population models generally assume that the dispersal trajectories of animals are random, but systematic dispersal could be more efficient at detecting new habitat and may therefore constitute a more realistic assumption. Here, we investigate, by means of simulations, the properties of a potentially widespread systematic dispersal strategy termed "foray search." Foray search was more efficient in detecting suitable habitat than was random dispersal in most landscapes and was less subject to energetic constraints. However, it also resulted in considerably shorter net dispersed distances and higher mortality per net dispersed distance than did random dispersal, and it would therefore be likely to lead to lower dispersal rates toward the margins of population networks. Consequently, the use of foray search by dispersers could crucially affect the extinction-colonization balance of metapopulations and the evolution of dispersal rates. We conclude that population models need to take the dispersal trajectories of individuals into account in order to make reliable predictions
Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models
The dispersal patterns of animals are important in metapopulation ecology because they affect the dynamics and survival of populations. Theoretical models assume random dispersal but little is known in practice about the dispersal behaviour of individual animals or the strategy by which dispersers locate distant habitat patches. In the present study, we released individual meadow brown butterflies (Maniola jurtina) in a non-habitat and investigated their ability to return to a suitable habitat. The results provided three reasons for supposing that meadow brown butterflies do not seek habitat by means of random flight. First, when released within the range of their normal dispersal distances, the butterflies orientated towards suitable habitat at a higher rate than expected at random. Second, when released at larger distances from their habitat, they used a non-random, systematic, search strategy in which they flew in loops around the release point and returned periodically to it. Third, butterflies returned to a familiar habitat patch rather than a non-familiar one when given a choice. If dispersers actively orientate towards or search systematically for distant habitat, this may be problematic for existing metapopulation models, including models of the evolution of dispersal rates in metapopulations
Challenges in Complex Systems Science
FuturICT foundations are social science, complex systems science, and ICT.
The main concerns and challenges in the science of complex systems in the
context of FuturICT are laid out in this paper with special emphasis on the
Complex Systems route to Social Sciences. This include complex systems having:
many heterogeneous interacting parts; multiple scales; complicated transition
laws; unexpected or unpredicted emergence; sensitive dependence on initial
conditions; path-dependent dynamics; networked hierarchical connectivities;
interaction of autonomous agents; self-organisation; non-equilibrium dynamics;
combinatorial explosion; adaptivity to changing environments; co-evolving
subsystems; ill-defined boundaries; and multilevel dynamics. In this context,
science is seen as the process of abstracting the dynamics of systems from
data. This presents many challenges including: data gathering by large-scale
experiment, participatory sensing and social computation, managing huge
distributed dynamic and heterogeneous databases; moving from data to dynamical
models, going beyond correlations to cause-effect relationships, understanding
the relationship between simple and comprehensive models with appropriate
choices of variables, ensemble modeling and data assimilation, modeling systems
of systems of systems with many levels between micro and macro; and formulating
new approaches to prediction, forecasting, and risk, especially in systems that
can reflect on and change their behaviour in response to predictions, and
systems whose apparently predictable behaviour is disrupted by apparently
unpredictable rare or extreme events. These challenges are part of the FuturICT
agenda
Autocracy-Sustaining Versus Democratic Federalism:Explaining the Divergent Trajectories of Territorial Politics in Russia and Western Europe
This article provides a comparative assessment of territorial politics in Russia and Western Europe. The consolidation or deepening of regional autonomy in Western Europe contrasts with the transformation of Russia from a segmented and highly centrifugal state into a centralized authoritarian state in the course of just two decades. The consolidation of territorial politics in Western Europe is linked to the presence of endogenous safeguards that are built into their territorial constitutional designs and most importantly to the dynamics that emanate from multi-level party competition in the context of a liberal and multi-level democracy. In contrast, in Russia, neither endogenous safeguards nor multi-level party democracy play an important role in explaining the dynamics of Russian federalism, but who controls key state resources instead. We argue that under Putin power dependencies between the Russian center and the regions are strongest where regional democracy is at its weakest, thus producing ‘autocracy-sustaining’ instead of a democratic federation. By studying the relationship between federalism and democracy in cases where both concepts are mutually reinforcing (as in Western Europe) with the critical case of Russia where they are not, we question the widely held view that democracy is a necessary pre-condition for federalism.Peer reviewe
Adaptive and maladaptive consequences of “matching habitat choice:” lessons from a rapidly-evolving butterfly metapopulation
Relationships between biased dispersal and local adaptation are currently debated. Here, I show how prior work on wild butterflies casts a novel light on this topic. “Preference” is defined as the set of likelihoods of accepting particular resources after encountering them. So defined, butterfly oviposition preferences are heritable habitat adaptations distinct from both habitat preference and biased dispersal, but influencing both processes. When a butterfly emigrates after its oviposition preference begins to reduce realized fecundity, the resulting biased dispersal is analogous to that occurring when a fish emigrates after its morphological habitat adaptations reduce its feeding rate. I illustrate preference-biased dispersal with examples from metapopulations of Melitaea cinxia and Euphydryas editha. E. editha were feeding on a well-defended host, Pedicularis, when humans created patches in which Pedicularis was killed and a less-defended host, Collinsia, was rendered phenologically available. Patch-specific natural selection favoured oviposition on Collinsia in logged (“clearing”) patches and on Pedicularis in undisturbed open forest. Quantitative variation in post-alighting oviposition preference was heritable, and evolved to be consistently different between patch types. This difference was driven more by biased dispersal than by spatial variation of natural selection. Insects developing on Collinsia in clearings retained adaptations to Pedicularis in clutch size, geotaxis and oviposition preference, forcing them to choose between emigrating in search of forest habitats with Pedicularis or staying and failing to find their preferred host. Insects that stayed suffered reduction of realized fecundity after delayed oviposition on Collinsia. Those that emigrated suffered even greater fitness penalty from consistently low offspring survival on Pedicularis. Paradoxically, most emigrants reduced both their own fitness and that of the recipient populations by dispersing from a benign natal habitat to which they were maladapted into a more demanding habitat to which they were well-adapted. “Matching habitat choice” reduced fitness when evolutionary lag rendered traditional cues unreliable in a changing environment
Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.Howard Hughes Medical InstituteDamon Runyon Cancer Research FoundationCharles A. King Trus
Using death to one's advantage: HIV modulation of apoptosis
Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down- regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis. Originally published Leukemia, Vol. 15, No. 3, Mar 200
Swarm Intelligence in Animal Groups: When Can a Collective Out-Perform an Expert?
An important potential advantage of group-living that has been mostly neglected by life scientists is that individuals in animal groups may cope more effectively with unfamiliar situations. Social interaction can provide a solution to a cognitive problem that is not available to single individuals via two potential mechanisms: (i) individuals can aggregate information, thus augmenting their ‘collective cognition’, or (ii) interaction with conspecifics can allow individuals to follow specific ‘leaders’, those experts with information particularly relevant to the decision at hand. However, a-priori, theory-based expectations about which of these decision rules should be preferred are lacking. Using a set of simple models, we present theoretical conditions (involving group size, and diversity of individual information) under which groups should aggregate information, or follow an expert, when faced with a binary choice. We found that, in single-shot decisions, experts are almost always more accurate than the collective across a range of conditions. However, for repeated decisions – where individuals are able to consider the success of previous decision outcomes – the collective's aggregated information is almost always superior. The results improve our understanding of how social animals may process information and make decisions when accuracy is a key component of individual fitness, and provide a solid theoretical framework for future experimental tests where group size, diversity of individual information, and the repeatability of decisions can be measured and manipulated
A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif
Impact of medical specialists' locus of control on communication skills in oncological interviews
SCOPUS: ar.jinfo:eu-repo/semantics/publishe
- …
