80 research outputs found

    Economic Analysis of Biodiesel Production from Waste Vegetable Oil in Mexicali, Baja California

    Get PDF
    Mexicali, capital of Baja California, Mexico, has a motor vehicle fleet of diesel estimated at 14,000 units and cargo transport. The transport cargo sector with 11,861 units, consumes about 169 million liters of diesel. The diesel used in Baja California comes from southern Mexico and is one of the causes of CO2 emissions that affect air quality in Mexicali, it is therefore important to explore options for replacing it with biodiesel, which produces less CO2 and can be obtained from waste material. Thus, in the analysis, was considered the use of waste vegetable oil from the Mexicali restaurant industry as a raw material for the production of 4.78 million liters of biodiesel energy equivalent to 4.45 million liters of diesel. The environmental benefit involving the replacement of such a volume of diesel with biodiesel is to reduce emissions by about 9,700 tons of CO2, 22 tons of SOx and 11 tons of PM10. To determine the economic feasibility of producing biodiesel, were applied the methodologies of net present value and internal rate of return. The results indicate that the production of biodiesel is profitable. However, the recovery time of investment, coupled with the uncertainty presented by the biofuels market, make necessary a policy that implements local tax resources to support the promotion, production and use of biodiesel for the transport sector. Therefore, under the circumstances considered in this analysis, the production of biodiesel is feasible if it is developed a synergy among the productive sectors, education and government. Key words: Biodiesel; Economic analysis; Waste vegetable oil; Transport cargo secto

    Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.844874882HHS \ National Institutes of Health (NIH) [AI118302-02]MCTI \ Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fabio Trindade Maranhao Costa [2012/16525-2]Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Carvalho through a Cientista do Nosso Estado fellowshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    SWOT Analysis Applied to Wheat Straw Utilization as a Biofuel in Mexico

    Get PDF
    Wheat is one of the main crops worldwide with a production of 733 million of tons by 2015. By 2013, the wheat grain production in Mexico was 3,357,307 t. Wheat straw is generated as a biomass waste once the wheat is harvested. However, the agricultural biomass waste has acquired international relevance as a source of bioenergy. The utilization of bioenergy has significant environmental benefits, and also economic benefits because the biomass waste is valorized as biofuel. The use of wheat straw as raw material for any productive process presents diverse factors that must be considered. Among those factors are the low density of biomass, handling and high transportation cost, an attractive heating value, and the physicochemical characterization. Therefore, the aim of this work was to apply the SWOT analysis to wheat straw utilization as a biofuel in Mexico. The main findings highlighted an estimation of 4,612,950.23 t of wheat straw generated. The experimental results of proximate analysis were 64.42% volatile matter, 19.49% fixed carbon and 16.09% ash. The higher heating was 14.86 MJ/kg. An energy potential of 69 PJ per agricultural cycle was calculated, equivalent to 19% of the biomass energy share reported in Mexico’s National Energy Balance, by 2014

    Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria.

    Get PDF
    Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patients' clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO) and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.8

    Solar Energy for a Solvent Recovery Stage in a Biodiesel Production Process

    Get PDF
    Recent research and development of clean energy have become essential due to the global climate change problem, which is caused largely by fossil fuels burning. Therefore, biodiesel, a renewable and ecofriendly biofuel with less environmental impact than diesel, continues expanding worldwide. The process for biodiesel production involves a significant energy demand, specifically in the methanol recovery stage through a flash separator and a distillation column. Traditionally, the energy required for this process is supplied by fossil fuels. It represents an opportunity for the application of renewable energy. Hence, the current study presents a system of thermal energy storage modeled in TRNSYS® and supported by simulations performed in ASPEN PLUS®. The aim of this research was to supply solar energy for a methanol recovery stage in a biodiesel production process. The results highlighted that it is feasible to meet 91% of the energy demand with an array of 9 parabolic trough collectors. The array obtained from the simulation was 3 in series and 3 in parallel, with a total area of 118.8 m2. It represents an energy saving of 70 MWh per year

    Association of TYR SNP rs1042602 with Melanoma Risk and Prognosis

    Get PDF
    Cutaneous melanoma is the most aggressive of skin tumors. In order to discover new biomarkers that could help us improve prognostic prediction in melanoma patients, we have searched for germline DNA variants associated with melanoma progression. Thus, after exome sequencing of a set of melanoma patients and healthy control individuals, we identified rs1042602, an SNP within TYR, as a good candidate. After genotyping rs1042602 in 1025 patients and 773 healthy donors, we found that the rs1042602-A allele was significantly associated with susceptibility to melanoma (CATT test: p = 0.0035). Interestingly, we also observed significant differences between patients with good and bad prognosis (5 years of follow-up) (n = 664) (CATT test for all samples p = 0.0384 and for men alone p = 0.0054). Disease-free-survival (DFS) analyses also showed that patients with the A allele had shorter DFS periods. In men, the association remained significant even in a multivariate Cox Proportional-hazards model, which was adjusted for age at diagnosis, Breslow thickness, ulceration and melanoma subtype (HR 0.4; 95% confidence interval (CI) 0.20–0.83; p = 0.0139). Based on our results, we propose that rs1042602-A is a risk allele for melanoma, which also seems to be responsible for a poorer prognosis of the disease, particularly in men

    In vitro characterization, modelling, and antioxidant properties of Polyphenon-60 from green tea in Eudragit S100-2 chitosan microspheres

    Get PDF
    Eudragit S100-coated chitosan microspheres (S100Ch) are proposed as a new oral delivery system for green tea polyphenon-60 (PP60). PP60 is a mixture of polyphenolic compounds, known for its active role in decreasing oxidative stress and metabolic risk factors involved in diabetes and in other chronic diseases. Chitosan-PP60 microspheres prepared by an emulsion cross-linking method were coated with Eudragit S100 to ensure the release of PP60 in the terminal ileum. Different corecoat ratios of Eudragit and chitosan were tested. Optimized chitosan microspheres were obtained with a chitosan:PP60 ratio of 8:1 (Ch-PP608:1), rotation speed of 1500 rpm, and surfactant concentration of 1.0% (m/v) achieving a mean size of 7.16 µm. Their coating with the enteric polymer (S100Ch-PP60) increased the mean size significantly (51.4 µm). The in vitro modified-release of PP60 from S100Ch-PP60 was confirmed in simulated gastrointestinal conditions. Mathematical fitting models were used to characterize the release mechanism showing that both Ch-PP608:1 and S100Ch-PP60 fitted the KorsmeyersPeppas model. The antioxidant activity of PP60 was kept in glutaraldehyde-crosslinked chitosan microspheres before and after their coating, showing an IC50 of 212.3 µg/mL and 154.4 µg/mL, respectively. The potential of chitosan microspheres for the delivery of catechins was illustrated, with limited risk of cytotoxicity as shown in Caco-2 cell lines using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The beneficial effects of green tea and its derivatives in the management of metabolic disorders can be exploited using mucoadhesive chitosan microspheres coated with enteric polymers for colonic delivery.This research was supported by the Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Sergipe (FAPITEC) CHAMADA MS/CNPq/FAPITEC/SE/SES N◦ 06/2018 – PROGRAMA DE PESQUISA PARA O SUS: GESTÃO COMPARTILHADA EM SAÚDE – PPSUS SERGIPE 2017/2018, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). This work was also financed through the projects M-ERA-NET/0004/2015-PAIRED, UIDB/04469/2020 (strategic fund) and PEst-OE/UID/AGR/04033/2019 (CITAB strategic fund), receiving support from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, and co-financed by FEDER, under the Partnership Agreement PT2020. The authors acknowledge the support of the research project: Nutraceutica come supporto nutrizionale nel paziente oncologico, CUP: B83D18000140007.info:eu-repo/semantics/publishedVersio

    A Customized Pigmentation SNP Array Identifies a Novel SNP Associated with Melanoma Predisposition in the SLC45A2 Gene

    Get PDF
    As the incidence of Malignant Melanoma (MM) reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2) and rs2069398 (SILV/CKD2), were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls). A novel SNP located on the SLC45A2 gene (rs35414) was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001). None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively) had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls). Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date
    • …
    corecore