65 research outputs found

    Constrained TRPV1 agonists synthesized via silver-mediated intramolecular azo-methine ylide cycloaddition of α-iminoamides

    Get PDF
    As part of an effort to identify agonists of TRPV1, a peripheral sensory nerve ion channel, high throughput screening of the NIH Small Molecule Repository (SMR) collection identified MLS002174161, a pentacyclic benzodiazepine. A synthesis effort was initiated that ultimately afforded racemic seco analogs 12 of the SMR compound via a silver mediated intramolecular [3+2] cycloaddition of an azo-methine ylide generated from α-iminoamides 11. The cycloaddition set four contiguous stereocenters and, in some cases, also spontaneously afforded imides 13 from 12. The synthesis of compounds 12, the features that facilitated the conversion of 12–13, and their partial agonist activity against TRPV1 are discussed

    Skeletal Diversification via Heteroatom Linkage Control: Preparation of Bicyclic and Spirocyclic Scaffolds from NSubstituted Homopropargyl Alcohols

    Get PDF
    The discovery and application of a new branching pathway synthesis strategy that rapidly produces skeletally diverse scaffolds is described. Two different scaffold types, one a bicyclic iodo-vinylidene tertiary amine/tertiary alcohol and the other, a spirocyclic 3-furanone, are each obtained using a two-step sequence featuring a common first step. Both scaffold types lead to intermediates that can be orthogonally diversified using the same final components. One of the scaffold types was obtained in sufficiently high yield that it was immediately used to produce a 97-compound library

    Psoriasis: Classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon.

    Get PDF
    Chronic plaque psoriasis is a common debilitating skin disease. The identification of the pathogenic role of the TNF/IL-23/T <sub>H</sub> 17 pathway has enabled the development of targeted therapies used in the clinic today. Particularly, TNF inhibitors have become a benchmark for the treatment of numerous chronic inflammatory diseases such as psoriasis. Although being highly effective in psoriasis treatment, anti-TNFs can themselves induce psoriasis-like skin lesions, a side effect called paradoxical psoriasis. In this review, we provide a comprehensive look at the different cellular and molecular players involved in classical plaque psoriasis and contrast its pathogenesis to paradoxical psoriasis, which is clinically similar but immunologically distinct. Classical psoriasis is a T-cell mediated autoimmune disease driven by TNF, characterised by T-cells memory, and a relapsing disease course. In contrast, paradoxical psoriasis is caused by the absence of TNF and represents an ongoing type-I interferon-driven innate inflammation that fails to elicit T-cell autoimmunity and lacks memory T cell-mediated relapses

    Evaluating the risk for Usutu virus circulation in Europe : comparison of environmental niche models and epidemiological models

    Get PDF
    Abstract Background Usutu virus (USUV) is a mosquito-borne flavivirus, reported in many countries of Africa and Europe, with an increasing spatial distribution and host range. Recent outbreaks leading to regional declines of European common blackbird (Turdus merula) populations and a rising number of human cases emphasize the need for increased awareness and spatial risk assessment. Methods Modelling approaches in ecology and epidemiology differ substantially in their algorithms, potentially resulting in diverging model outputs. Therefore, we implemented a parallel approach incorporating two commonly applied modelling techniques: (1) Maxent, a correlation-based environmental niche model and (2) a mechanistic epidemiological susceptible-exposed-infected-removed (SEIR) model. Across Europe, surveillance data of USUV-positive birds from 2003 to 2016 was acquired to train the environmental niche model and to serve as test cases for the SEIR model. The SEIR model is mainly driven by daily mean temperature and calculates the basic reproduction number R0. The environmental niche model was run with long-term bio-climatic variables derived from the same source in order to estimate climatic suitability. Results Large areas across Europe are currently suitable for USUV transmission. Both models show patterns of high risk for USUV in parts of France, in the Pannonian Basin as well as northern Italy. The environmental niche model depicts the current situation better, but with USUV still being in an invasive stage there is a chance for under-estimation of risk. Areas where transmission occurred are mostly predicted correctly by the SEIR model, but it mostly fails to resolve the temporal dynamics of USUV events. High R0 values predicted by the SEIR model in areas without evidence for real-life transmission suggest that it may tend towards over-estimation of risk. Conclusions The results from our parallel-model approach highlight that relying on a single model for assessing vector-borne disease risk may lead to incomplete conclusions. Utilizing different modelling approaches is thus crucial for risk-assessment of under-studied emerging pathogens like USUV

    Diversity by Divergence: Solution-Phase Parallel Synthesis of a Library of <i>N</i>‑Diversified 1‑Oxa-7-Azaspiro[4.5]decan-2-yl-Propanes and -Butanes

    No full text
    The synthesis of a 162-member compound library derived from a single precursor via a multistage divergence strategy is described. Divergence is sequentially introduced in three ways: (1) by early preparation of two separable spirocyclic diastereomers, (2) by elaboration of each spirocyclic diastereomer to a different scaffold using four Horner–Emmons–Wadsworth reagents, and (3) by employing three different modes of nitrogen diversification with each scaffold to afford the final compounds. This 2 diastereomers × 4 reagents × 3 modes of diversification strategy leads to 24 unique synthetic pathways that ultimately afforded, in parallel format, the 162-compound set

    Antitumor effects of synthetic 6,7-annulated-4-substituted indole compounds in L1210 leukemic cells in vitro

    Get PDF
    Background: Because annulated indoles have almost no representation in the PubChem or MLSMR databases, an unprecedented class of an indole-based library was constructed, using the indole aryne methodology, and screened for antitumor activity. Sixty-six novel 6,7-annulated-4-substituted indole compounds were synthesized, using a strategic combination of 6,7-indolyne cycloaddition and cross-coupling reactions under both Suzuki-Miyaura and Buchwald-Hartwig conditions, and tested for their effectiveness against murine L1210 tumor cell proliferation in vitro. Materials and Methods: Various markers of tumor cell metabolism, DNA degradation, mitotic disruption, cytokinesis and apoptosis were assayed in vitro to evaluate drug cytotoxicity. Results: Most compounds inhibited the metabolic activity of leukemic cells in a time- and concentration-dependent manner but only 9 of them were sufficiently potent to inhibit L1210 tumor cell proliferation by 50% in the low-μM range after 2 (IC[subscript 50]: 4.5-20.4 μM) and 4 days (0.5-4.0 μM) in culture. However, the antiproliferative compounds that were the most effective at day 4 were not necessarily the most potent at day 2, suggesting different speeds of action. A 3-h treatment with antiproliferative annulated indole was sufficient to inhibit, in a concentration-dependent manner, the rate of DNA synthesis measured in L1210 cells over a 0.5-h period of pulse-labeling with [superscript 3]H-thymidine. Four of the antiproliferative compounds had weak DNA-binding activities but one compound reduced the fluorescence of the ethidium bromide-DNA complex by up to 53%, suggesting that some annulated indoles might directly interact with double-stranded DNA to disrupt its integrity and prevent the dye from intercalating into DNA base pairs. However, all 9 antiproliferative compounds induced DNA cleavage at 24 h in L1210 cells, containing [superscript 3]H-thymidine-prelabeled DNA, suggesting that these antitumor annulated indoles might trigger an apoptotic pathway of DNA fragmentation. Indeed the antiproliferative annulated indoles caused a time-dependent increase of caspase-3 activity with a peak at 6 h. Interestingly, the compounds with the most potent antiproliferative IC50 values at day 2 were consistently the most effective at inhibiting DNA synthesis at 3 h and inducing DNA fragmentation at 24 h. After 24-48 h, antiproliferative concentrations of annulated indoles increased the mitotic index of L1210 cells and stimulated the formation of many bi-nucleated cells, multi-nucleated cells, apoptotic cells and micronuclei, suggesting that these antitumor compounds might enhance mitotic abnormality, induce chromosomal damage or missegregation, and block cytokinesis to induce apoptosis. Conclusion: Although annulated indoles may have interesting bioactivity, novel derivatives with different substitutions must be synthesized to elucidate structure-activity relationships, identify more potent antitumor lead compounds, and investigate their molecular targets and mechanisms of action

    Mechanisms by which synthetic 6,7-annulated-4-substituted indole compounds with anti-proliferative activity disrupt mitosis and block cytokinesis in human HL-60 tumor cells in vitro

    Get PDF
    Background: Synthetic 6,7-annulated-4-substituted indole compounds, which elicit interesting antitumor effects in murine L1210 leukemia cells, were tested for their ability to inhibit human HL-60 tumor cell proliferation, disrupt mitosis and cytokinesis, and interfere with tubulin and actin polymerization in vitro. Materials and Methods: Various markers of metabolic activity, mitotic disruption and cytokinesis were used to assess the effectiveness of the drugs in the HL-60 tumor cell system. The ability of annulated indoles to alter the polymerizations of purified tubulin and actin were monitored in cell-free assays and were compared to the effects of drugs known to disrupt the dynamic structures of the mitotic spindle and cleavage furrow. Results: With one exception, annulated indoles inhibited the metabolic activity of HL-60 tumor cells in the low-micromolar range after two and four days in culture but these anti-proliferative effects were weaker than those of jasplakinolide, a known actin binder that blocks cytokinesis. After 24-48 h, antiproliferative concentrations of annulated indoles increased the mitotic index of HL-60 cells similarly to vincristine and stimulated the formation of many bi-nucleated cells, multi-nucleated cells and micronuclei, similarly to taxol and jasplakinolide, suggesting that these antitumor compounds might increase mitotic abnormality, induce chromosomal damage or missegregation, and block cytokinesis. Since annulated indoles mimicked the effect of vincristine on tubulin polymerization, but not that of taxol, these compounds might represent a new class of microtubule de-stabilizing agents that inhibit tubulin polymerization. Moreover, annulated indoles remarkably increased the rate and level of actin polymerization similarly to jasplakinolide, suggesting that they might also stabilize the cleavage furrow to block cytokinesis. Conclusion: Although novel derivatives with different substitutions must be synthesized to elucidate structure–activity relationships, identify more potent antitumor compounds and investigate different molecular targets, annulated indoles appear to interact with both tubulin to reduce microtubule assembly and actin to block cytokinesis, thereby inducing bi- and multinucleation, resulting in genomic instability and apoptosis
    corecore