440 research outputs found

    Secondary Intervention After Endovascular Abdominal Aortic Aneurysm Repair

    Get PDF

    High Power Cyclotrons for the Neutrino Experiments DAEÎŽALUS and IsoDAR

    Get PDF
    DAEÎŽALUS (Decay At rest Experiment for ÎŽcp At a Laboratory for Underground Science) has been proposed to measure the value of the CP violating phase delta through the oscillation of low energy muon anti-neutrinos to electron antineutrinos. With a single large detector, three accelerators at different distances enable the oscillation to be measured with sufficient accuracy. We have proposed the superconducting multi-megawatt DAEÎŽALUS Supercinducting Ring Cyclotron (DSRC) as the means of producing the 800 MeV 12 mA protons required, through the acceleration of H2+, ions with highly efficient stripping extraction. The DSRC comprises twin ion sources and injector cyclotrons, followed by a booster. The injector cyclotron can also be used for a separate experiment, IsoDAR (Isotope Decay At Rest) in which low energy protons produce Lithium 8, and thus a very pure electron antineutrino source which can be used to measure, or rule out, short range oscillation to a sterile neutrino. We describe recent developments in the designs of the injector and the booster, and the prospects for the two experiments

    Demonstration of a Lightguide Detector for Liquid Argon TPCs

    Get PDF
    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector

    A Prototype Detector for Directional Measurement of the Cosmogenic Neutron Flux

    Full text link
    This paper describes a novel directional neutron detector prototype. The low pressure time projection chamber uses a mix of helium and CF4 gases. The detector reconstructs the energy and angular distribution of fast neutron recoils. This paper reports results of energy calibration using an alpha source and angular reconstruction studies using a collimated neutron source. The best performance is obtained with a 12.5% CF4 gas mixture. At low energies the target for fast neutrons transitions is primarily helium, while at higher energies, the fluorine contributes as a target. The reconstruction efficiency is both energy and target dependent. For neutrons with energies less than 20 MeV, the reconstruction efficiency is ~40% for fluorine recoils and ~60% for helium recoils.Comment: final versio

    Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?

    Full text link
    Femtosecond pump-probe second-harmonic generation (SHG) and transient linear reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in air to analyze whether the electron temperature affects Fresnel factors or nonlinear susceptibilities, or both. Sensitivity to electron temperatures was attained by using photon energies near the interband transition threshold. We find that the nonlinear susceptibility carries the electron temperature dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel factors. This contrasting behavior emphasizes that SHG is not a priori sensitive to electron dynamics at surfaces or interfaces, notwithstanding its cause.Comment: 11 pages, 4 figure

    Inhibition of liver methionine adenosyltransferase gene expression by 3-methylcolanthrene: protective effect of S-adenosylmethionine

    Get PDF
    Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis of S-adenosylmethionine (AdoMet), the most important biological methyl donor. Liver MAT I/III is the product of the MAT1A gene. Hepatic MAT I/III activity and MAT1A expression are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon neoplastic transformation of the liver. In the present work, we evaluated whether MAT1A expression could be targeted by the polycyclic arylhydrocarbon (PAH) 3-methylcholanthrene (3-MC) in rat liver and cultured hepatocytes. MAT1A mRNA levels were reduced by 50% following in vivo administration of 3-MC to adult male rats (100 mg/kg, p.o., 4 days' treatment). This effect was reproduced in a time- and dose-dependent fashion in cultured rat hepatocytes, and was accompanied by the induction of cytochrome P450 1A1 gene expression. This action of 3-MC was mimicked by other PAHs such as benzo[a]pyrene and benzo[e]pyrene, but not by the model arylhydrocarbon receptor (AhR) activator 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3-MC inhibited transcription driven by a MAT1A promoter-reporter construct transfected into rat hepatocytes, but MAT1A mRNA stability was not affected. We recently showed that liver MAT1A expression is induced by AdoMet in cultured hepatocytes. Here, we observed that exogenously added AdoMet prevented the negative effects of 3-MC on MAT1A expression. Taken together, our data demonstrate that liver MAT1A gene expression is targeted by PAHs, independently of AhR activation. The effect of AdoMet may be part of the protective action of this molecule in liver damage

    Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept

    Get PDF
    Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with EÎœ<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for ΜΌ→Μe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.
    • 

    corecore