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Abstract

Methionine adenosyltransferase (MAT) is an essential enzyme that catalyzes the synthesis ofS-adenosylmethionine (AdoMet), the most
important biological methyl donor. Liver MAT I/III is the product of theMAT1Agene. Hepatic MAT I/III activity andMAT1Aexpression
are compromised under pathological conditions such as alcoholic liver disease and hepatic cirrhosis, and this gene is silenced upon
neoplastic transformation of the liver. In the present work, we evaluated whetherMAT1Aexpression could be targeted by the polycyclic
arylhydrocarbon (PAH) 3-methylcholanthrene (3-MC) in rat liver and cultured hepatocytes.MAT1AmRNA levels were reduced by 50%
following in vivo administration of 3-MC to adult male rats (100 mg/kg, p.o., 4 days’ treatment). This effect was reproduced in a time- and
dose-dependent fashion in cultured rat hepatocytes, and was accompanied by the induction of cytochrome P450 1A1 gene expression. This
action of 3-MC was mimicked by other PAHs such as benzo[a]pyrene and benzo[e]pyrene, but not by the model arylhydrocarbon receptor
(AhR) activator 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3-MC inhibited transcription driven by aMAT1Apromoter–reporter construct trans-
fected into rat hepatocytes, butMAT1AmRNA stability was not affected. We recently showed that liverMAT1Aexpression is induced by
AdoMet in cultured hepatocytes. Here, we observed that exogenously added AdoMet prevented the negative effects of 3-MC onMAT1A
expression. Taken together, our data demonstrate that liverMAT1Agene expression is targeted by PAHs, independently of AhR activation.
The effect of AdoMet may be part of the protective action of this molecule in liver damage. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Liver methionine metabolism starts with the formation of
AdoMet, which is the most important methyl donor in
biological methylations, including all detoxifying reactions
[1]. In addition, AdoMet participates in polyamine biosyn-
thesis and is a precursor for the synthesis of GSH in the

liver, from where this compound is excreted into circulation
and bile [2]. Sulfate groups for conjugation reactions are
also derived from AdoMet through the transsulfuration
pathway [1]. The synthesis of AdoMet is catalyzed by MAT
(EC 2.5.1.6). There are two genes coding for MAT in
mammals:MAT1A and MAT2A, and their products are
known as MAT I/III and MAT II, respectively [3].MAT1A
is expressed only in the adult liver, whileMAT2A is ex-
pressed outside this organ and in the fetal and transformed
hepatocytes [4]. Hepatic MAT activity and expression are
impaired in pathological conditions such as alcoholic and
viral liver cirrhosis and in experimental models of liver
injury in response to ethanol, carbon tetrachloride, bacterial
lipopolysaccharide, and hypoxia [4–6]. Additionally, ad-
ministration to rats of chemical carcinogens, such as
2-acetylaminofluorene and diethylnitrosamine, also com-
promise liver AdoMet synthesis [7,8].
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In addition to the relevance of the numerous reactions in
which AdoMet participates, the pathological importance of
impaired AdoMet production can be inferred from the pro-
tective effects of exogenously administered AdoMet. This
has been observed in experimental models of liver damage
induced by carbon tetrachloride, galactosamine, ethanol,
cytokines, paracetamol, and thioacetamide [4]. Further-
more, in a recently reported clinical trial, AdoMet was
found to improve survival of alcoholic cirrhotic patients [9].
However, the molecular mechanisms behind the hepatopro-
tective actions of AdoMet are not completely known. In this
regard, we have recently demonstrated the key role played
by AdoMet in the preservation ofMAT1Agene expression
in rat hepatocytes [10], which is known to be down-regu-
lated in the human and rat cirrhotic liver [5,11].

PAHs such as 3-MC are widely distributed carcinogens
that are actively metabolized in the liver [12]. PAHs have
been found to cause alterations in liver metabolism, such as
impairment in phospholipid methylation [13] and phos-
phatidylcholine biosynthesis [14], and to increase lipid per-
oxidation and liver damage in response to paracetamol [15].
These compounds exert profound effects on the expression
of a variety of genes, in particular those involved in drug
metabolism, the induction ofCYP1A1being among the
best-characterized responses [16–18]. In addition to the
well-known induction of gene expression by PAHs, these
chemicals have also been shown to impair the expression of
other genes, such asg-glutamyltranspeptidase [19] and the
drug-metabolizing enzymes cytochrome CYP2C11 [20–24]
and hydroxysteroid sulfotransferase-a [25]. However, the
molecular mechanisms behind PAH-mediated down-regu-
lation of gene expression are less well understood. Given
the central role played byMAT1Ain AdoMet synthesis and
one-carbon metabolism, together with the relevance of this
metabolic pathway in the preservation of liver function, we
have now investigated the response of this gene to this
family of carcinogensin vivo and in a model of cultured rat
hepatocytes.

2. Materials and methods

2.1. Materials

3-MC, B[a]P, B[e]P, a-NF, triamcinolone, and NAC
were from Sigma Chemical Co. TCDD was purchased from
Cambridge Isotope Laboratories. AdoMet, in the stable
form of sulfate-p-toluenosulfonate salt produced by Knoll
Farmaceutici, was provided by Europharma. ActD, restric-
tion endonucleases, and collagenase were from Boehringer
Mannheim, while culture media and supplements were from
Life Technologies. Collagen type I from rat tail was pur-
chased from Collaborative Research-Biomedical Products.
EGSH was a gift from Dr. M. Martin-Lomas (CSIC, Sevilla,
Spain). All other reagents and chemicals were from Sigma
Chemical, Merck, and Fluka.

2.2. Animals and treatment

Male Wistar rats (200–250 g) were used forin vivo
experiments. Animals received a daily oral dose of 3-MC
(100 mg/kg) prepared in corn oil (26.5 mg/mL), while
controls were treated with vehicle alone. After 4 days of
treatment, animals were killed and liver samples taken and
frozen in liquid nitrogen. The duration of this treatment was
in the range of that used in other studies, including gene
expression studies, in which the effects of PAHs have been
assessed in rat liver [24–26]. Animals were treated hu-
manely, and study protocols were in compliance with our
institution’s guidelines for use of laboratory animals.

2.3. Determination of AdoMet levels in rat liver samples

Liver tissue (100 mg) was homogenized and deprotein-
ized in 0.4 M perchloric acid and centrifuged at 12,000g for
30 min at 4°. Supernatants were analyzed by reversed-phase
high performance liquid chromatography as described pre-
viously [27].

2.4. Rat hepatocyte isolation and cell culture

Liver cells were isolated from male Wistar rats (200–250
g) by collagenase perfusion as described previously [6].
Cells were plated onto 60-mm collagen-coated culture
dishes at a density of 33 106 cells per dish. Cultures were
maintained in RPMI-1640 medium supplemented with 10%
fetal calf serum, 2 mM glutamine, 50 mM penicillin, and 50
mg/mL of streptomycin sulfate. After a 2-hr incubation, the
culture medium was removed and cultures were re-fed the
same medium with 2.5% fetal calf serum. Cells were main-
tained at 37° in a humidified incubator containing 21%
oxygen and 5% carbon dioxide in air. All experiments were
started 2 hr post-killing. Cellular viability was tested by the
trypan blue exclusion test, and no significant differences
were found between controls and any of the different treat-
ments performed.

2.5. RNA isolation and Northern blot analysis

Total RNA was isolated by the guanidinium thiocyanate
method [28]. Aliquots (20mg) of total RNA were size-
fractionated by electrophoresis in 1% agarose gel under
denaturing conditions. RNAs were then blotted and fixed to
Nytran membranes. Prehybridization and hybridization
were performed as described previously [29].MAT1A
mRNA levels were measured using a 2.2-kbEcoRI frag-
ment of rat MAT1A cDNA [30]. CYP1A1mRNA levels
were determined using a 0.7-kbPstI fragment from mouse
CYP1A1cDNA (a gift from Dr. P. Ferna´ndez-Salguero,
Universidad de Extremadura, Spain) [31]. Equal loading of
the RNA gels was assessed by hybridization with a probe
specific for 18S rRNA. The probes were labeled with
[a-32P]dCTP (3000 Ci/mmol; Amersham Pharmacia Bio-
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tech) by ramdom priming using the RediPrime DNA Label-
ing System (Amersham Pharmacia Biotech). Specific activ-
ity was usually 53 108 cpm/mg of DNA. Quantitation was
performed by scanning densitometry of the x-ray films.

2.6. Immunoblot analysis

For determination of MAT I/III protein levels, hepato-
cytes were lysed in RIPA (radioimmunoprecipitation assay)
buffer (10 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1% Triton
X-100, 1% sodium deoxycholate, 0.1% SDS, 0.1 mM phe-
nylmethylsulfonyl fluoride, and 1 mM benzamidine). The
homogenate was centrifuged for 30 min at 10,000g, and
supernatants collected. Equal amounts of protein (20mg)
were subjected to 10% SDS–PAGE, and then electro-
phoretically transferred to nitrocellulose membranes. Im-
munodetection of MAT I/III was performed using a rabbit
anti-rat MAT I/III antiserum [32] and a horseradish perox-
idase-conjugated secondary antibody. Blots were developed
by enhanced chemoluminescence according to the manufac-
turer’s instructions (Dupont).

2.7. Transient transfections of cultured rat hepatocytes

Hepatocytes were seeded as described above in collagen-
coated multiwell dishes (53 105 cells per 30-mm well) 12
hr before transfections. Cells were transfected with 5mg of
a MAT1A promoter–luciferase construct encompassing 1.4
kb of the 59-flanking region of this gene (nucleotides21405
to 165) [33], using the TFx50 reagent (Promega) according
to the manufacturer’s instructions. Five micrograms of the
b-galactosidase expression vector pCH110 (Amersham
Pharmacia Biotech) was included as an internal standard of
transfection efficiency. After 24 hr, cells were harvested and
luciferase and galactosidase activities were determined as
described [33]. Values reported are means of three indepen-
dent experiments performed in triplicate.

2.8. Statistics

The data are the means6 SEM of at least two indepen-
dent experiments done in triplicate. Statistical significance
was estimated with Student’st-test. AP value of,0.05 was
considered significant.

3. Results

3.1. Effect of 3-MC on rat liverMAT1A gene expression
in vivo

We first examined the effect of 3-MC treatment on rat
liver MAT1A gene expression. For this purpose, animals
received a daily oral dose of 100 mg/kg of 3-MC for a
period of four days, then liverMAT1AmRNA levels were
determined by Northern blotting. As shown in Fig. 1A, liver

MAT1Aexpression was reduced by about 50% in response
to 3-MC as compared to the levels found in control animals.
The duration of this treatment was not long enough to detect
changes in AdoMet levels (37.931 4.02 pmol/mg of liver
tissue in controls versus 33.631 7.26 pmol/mg of liver
tissue in 3-MC-treated animals). In order to monitor the
effectiveness of our treatment, the expression ofCYP1A1,
probably the best-characterized target gene for xenobiotic
action, was determined in the liver of control and 3-MC-
treated animals. As represented in Fig. 1B, 3-MC treatment
resulted in the expected induction ofCYP1A1mRNA.

3.2. Effect of 3-MC onMAT1A gene expression in
isolated rat hepatocytes

In order to further characterize 3-MC effects onMAT1A
expression, isolated rat hepatocytes in culture were treated

Fig. 1. Expression ofMAT1A and CYP1A1in the liver of 3-MC-treated
rats. Animals were treated for 4 days with a daily oral dose of 100 mg/kg
of 3-MC in corn oil, while controls received the same volume of vehicle.
Northern blot analysis of (A)MAT1Aand (B)CYP1A1mRNA levels in the
liver of control (C) and 3-MC-treated (3-MC) rats. 18S rRNA hybridization
was performed as loading control. Data are means6 SEM (N 5 3 for the
control group; N5 6 for the 3-MC group) (*P , 0.05compared with the
control value).
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with 3-MC (5 mM) for different periods of time. As previ-
ously described [6,10], a time-dependent decrease in
MAT1AmRNA levels was observed when hepatocytes were
set in culture (Fig. 2A). This situation is common to other

liver-specific genes when their expression is measured in
cultured hepatocytes [34]. However, in response to 3-MC a
pronounced decrease inMAT1AmRNA content (50% with
respect to control value) was already detected after 7 hr of
treatment, while controls were still comparable to those
present at the onset of cultures (time 0) (Fig. 2A). MAT I/III
protein levels were also measured under the same condi-
tions. Fig. 2B shows a representative Western blot which
shows how MAT I/III protein levels followed the changes
reported above for its mRNA, being almost undetectable
after 48 hr of treatment with 3-MC (5mM). The effect of
3-MC on MAT1A expression was dose-dependent, being
already observed at 1mM, and was accompanied by the
concomitant induction ofCYP1A1mRNA (Fig. 2C).

3.3. Lack of involvement of the AhR pathway in
3-MC-mediated down-regulation ofMAT1A expression

At this point, it was important to know if the observed
effects of 3-MC onMAT1A expression were mediated
through the interaction of this compound with the AhR
receptor, which is responsible for many of the gene regula-
tory events elicited by xenobiotics. For this purpose, hepa-
tocytes were treated for 24 hr with 1mM TCDD, a potent
agonist of the AhR receptor used at a high concentration in
the culture medium. As shown in Fig. 3, this treatment
induced no changes inMAT1A mRNA levels, while there
was a substantial induction ofCYP1A1gene expression.
Further evidence for the lack of involvement of the AhR in
MAT1A down-regulation by 3-MC was obtained when
hepatocytes were treated simultaneously with this agent (5
mM) and the AhR antagonista-NF (20mM) [35] for 24 hr.
Under these conditions, 3-MC still exerted its negative
effect on MAT1A mRNA levels, whilea-NF effectively
blocked the induction ofCYP1A1mRNA (data not shown).
Interestingly, other compounds structurally related to 3-MC,
such as B[a]P and B[e]P, also displayed inhibitory effects
on MAT1A expression. Fig. 3 shows the effect of 24-hr
treatment of cultured hepatocytes with 5mM of B[ a]P or 20
mM B[ e]P. These treatments resulted in a 65% and 50%
reduction in MAT1A mRNA levels, respectively, while
CYP1Atranscription was activated as expected. Phenobar-
bital, another xenobiotic structurally unrelated to PAHs, did
not affect MAT1A expression after 24-hr incubation at 1
mM (data not shown).

3.4. No involvement of impaired glucocorticoid action
and the generation of reactive oxygen species in the
inhibition of MAT1A gene expression by 3-MC

Given the prominent role played by glucocorticoids in
the maintenance of liverMAT1Aexpressionin vivo [36] and
the previously reported ability of certain xenobiotics, in-
cluding 3-MC, to impair glucocorticoid actions [26], we
wanted to know if 3-MC could interfere with the effect of
these hormones onMAT1A gene expression. For this pur-

Fig. 2. Effect of 3-MC onMAT1Aexpression in cultured hepatocytes. (A)
Primary cultures of rat hepatocytes were treated for different periods of
time with 3-MC (5mM) (solid circles) or DMSO (controls) (open circles)
andMAT1AmRNA levels were analyzed by Northern blotting. Data are the
means6 SEM of three independent experiments done in triplicate (*P ,
0.05compared with the control value). (B) Western blot analysis of MAT
I/III protein in hepatocytes treated for different periods of time with 3-MC
(5 mM) or DMSO (a representative blot of three independent experiments
is shown). (C) Northern blot analysis ofMAT1A and CYP1A1mRNA
levels in hepatocytes treated for 24 hr with different concentrations of
3-MC (a representative blot of three independent experiments is shown).
18S rRNA hybridization was performed as loading control in Northern
blotting experiments.
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pose, hepatocytes were treated with 3-MC (5mM) for 24 hr
in the presence or absence of 1mM triamcinolone, and then
MAT1A mRNA levels were quantitated by Northern blot-
ting. As shown in Fig. 4A, 3-MC was able to inhibit the
up-regulation ofMAT1A mRNA levels in response to tri-
amcinolone, although the magnitude of the 3-MC effect was
similar to that observed in the absence of the glucocorticoid
(about 50%). In order to determine if 3-MC effects could be
due to the impairment of triamcinolone action onMAT1A
gene expression or if these two agents acted independently,
hepatocytes were preincubated with 3-MC (5mM) for 14 hr,
with the response to the glucocorticoid then tested in control
(without 3-MC) and pretreated (with 3-MC) cells by a
subsequent incubation for 4 hr in the presence of 1mM
triamcinolone. As shown in Fig. 4B, glucocorticoid respon-
siveness was preserved in hepatocytes that had been pre-
treated with 3-MC, as indicated by the similar response to
triamcinolone in terms ofMAT1AmRNA induction, regard-
less of the previous presence of the xenobiotic.

It is known that some of the effects exerted by xenobi-
otics such as 3-MC on the expression of certain genes can
be mediated through the generation of reactive oxygen spe-
cies and the depletion of intracellular GSH [37,38]. In order
to evaluate whether this situation could be of importance in
the down-regulation ofMAT1A expression by 3-MC, we
incubated cultured rat hepatocytes with 3-MC in the pres-
ence of the antioxidants NAC (5 mM) or the cell-permeable
ethyl ester of GSH, EGSH (5 mM) for 24 hr and measured
MAT1AmRNA levels. None of these antioxidants was able
to preventMAT1AmRNA down-regulation by 3-MC (data
not shown). In addition, treatment with menadione, a well-
known inducer of cellular oxidative stress, did not affect
MAT1Aexpression (data not shown).

3.5. Mechanism ofMAT1A mRNA down-regulation by
3-MC

We studied the mechanisms responsible for the reduction
in MAT1A steady-state mRNA levels by 3-MC. First, we
analyzed whether this compound was able to alterMAT1A
mRNA stability. For this purpose, hepatocytes were prein-
cubated with the transcriptional inhibitor ActD (5mg/mL)
for 2 hr and then, without removing ActD from the culture
medium, half of the plates received 3-MC (5mM) or were
left untreated.MAT1AmRNA levels were measured at dif-
ferent time points by Northern blotting. As shown in Fig.
5A, when overall transcription was blocked,MAT1AmRNA
levels decayed at the same rate in control and 3-MC-treated
cells, suggesting thatMAT1AmRNA stability was not com-
promised by this agent. This result was further confirmed
when rat hepatoma cells were transiently transfected with an
expression vector encompassing the full-lengthMAT1A
cDNA and transfectants were treated with 3-MC. In agree-
ment with our observations using ActD, the steady-state
levels of MAT1A mRNA encoded by the transfected con-
struct were not reduced in response to 3-MC (data not
shown).

We next examined ifMAT1A transcription could be
targeted by 3-MC. To this end, cultured hepatocytes were
transiently transfected with a construct encompassing a lu-
ciferase reporter gene under the control of 1.4 kb of the rat
MAT1A 59 region, as described in Methods and as previ-
ously reported [10]. Transfected cells were treated with
either DMSO (the vehicle in which 3-MC is dissolved) or
with 3-MC at 5mM, and then luciferase activity was mea-
sured in cellular lysates after 24 hr of treatment. As shown
in Fig. 5B, 3-MC treatment resulted in a 55% reduction in

Fig. 3. The inhibitory effect of 3-MC onMAT1Aexpression is independent of the AhR pathway. Northern blot analysis ofMAT1AandCYP1A1mRNA levels
in hepatocytes treated for 24 hr with TCDD (1mM), B[a]P (5 mM), or B[e]P (20mM). Control cells were incubated in the presence of DMSO. 18S rRNA
hybridization is shown in all cases as loading control. This experiment was repeated three times in duplicate with similar results, and a representative blot
is shown.
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luciferase activity as compared with vehicle-treated con-
trols. As specified in Methods, hepatocytes were cotrans-
fected with a plasmid coding forb-galactosidase to monitor
transfection efficiency and to assess the specificity of 3-MC
effects. We recently reported that AdoMet plays a central
role in the maintenance ofMAT1Aexpression in rat hepa-
tocytes [10]. Although the mechanisms behind this effect of
AdoMet are not completely known, this effect takes place at
the transcriptional level and a methylation reaction seems to

be involved [10]. We tested whether exogenously added
AdoMet could prevent the down-regulation ofMAT1Aex-
pression mediated by 3-MC. Hepatocytes were transiently
transfected with the above-mentionedMAT1A promoter–
luciferase reporter vector, then cells were treated with 3-MC
(5 mM) for 24 hr in the presence or absence of AdoMet (2
mM), and luciferase activity was measured. As shown in
Fig. 5B, AdoMet prevented the down-regulation of reporter
gene expression driven by theMAT1A promoter. We next
examined if this effect of AdoMet onMAT1A promoter
down-regulation by 3-MC could be observed at the mRNA
level. For this purpose, cultured hepatocytes were incubated
with 3-MC (5mM) in the presence or absence of AdoMet (4
mM) for 24 hr, andMAT1AmRNA levels were then mea-
sured. As shown in Fig. 5C, and as reported [10], AdoMet
treatment resulted in higher levels ofMAT1AmRNA when
compared with controls. When cells were treated with 3-MC
(5 mM, 24 hr) in the presence of AdoMet (4 mM), the
down-regulation ofMAT1AmRNA levels was totally pre-
vented (Fig. 5C). This is in agreement with the results
obtained in the transfection experiments shown in Fig. 5B.
A similar response was observed when hepatocytes were
first treated with 3-MC (5mM) for 12 hr, and then AdoMet
(4 mM) was added to the culture medium and incubation
continued for another 12 hr. Under these conditions,
MAT1AmRNA levels recovered to levels equivalent to cells
treated with AdoMet without preincubating with the xeno-
biotic (Fig. 5D). Interestingly, AdoMet did not prevent the
induction ofCYP1A1mRNA by 3-MC (data not shown).

4. Discussion

In the liver, methionine metabolism starts with the for-
mation of AdoMet, a reaction catalyzed by MAT I/III. This
is the preferred catabolic route for this amino acid, and
represents the first step of a metabolic pathway also known
as the methionine cycle. This pathway leads to the provision
of methyl groups (one-carbon units) for methylation reac-
tions, precursors for polyamine and GSH biosynthesis, and
sulfate groups for xenobiotic detoxication [1,2,4]. An ade-
quate supply of one-carbon units to the liver is essential for
the preservation of its differentiated functions. When the
flow of one-carbon units is impaired due to severe dietary
restrictions or to liver damage, many of the tissue-specific
functions of this organ are compromised and can be subse-
quently lost in a transition to a preneoplastic condition. An
early biochemical event in these situations is the reduced
availability of AdoMet, which may be due to a shortage of
its precursor (as in methionine/choline-deficient diets) [39],
impaired synthesis because of the inactivation of MAT I/III
or impairedMAT1Aexpression, or the overall derangement
of the methionine cycle [4–6,40]. The beneficial effects of
AdoMet administration in such situations, which include the
prevention of the neoplastic conversion of the liver, further
support the importance of this metabolic pathway and a role

Fig. 4. 3-MC does not interfere with the glucocorticoid-mediated induction
of MAT1A expression. (A) Effect of 3-MC onMAT1A expression in
glucocorticoid-treated hepatocytes. Cells were incubated for 24 hr with
DMSO (controls) or 3-MC (5mM) in the presence or absence of 1mM
triamcinolone, andMAT1A mRNA levels were analyzed by Northern
blotting (*P , 0.05compared with the control value). (B) Effect of 3-MC
pretreatment on the glucocorticoid-dependent induction ofMAT1Aexpres-
sion in rat hepatocytes. Cells were preincubated for 14 hr in the presence
of DMSO (controls) (circles) or 3-MC (5mM) (squares). Half of the plates
in each case then received a single dose of 1mM triamcinolone to induce
MAT1A expression (closed circles and squares), while the other half re-
mained untreated (open squares and circles). Incubation continued for a
further 4 hr andMAT1AmRNA levels were analyzed by Northern blotting.
Data are means6 SEM of two independent experiments done in triplicate
(* P , 0.05 compared with the control value in each case).
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for this compound in the maintenance of liver functions
[4,9,41,42].

These notions led us to study herein whetherMAT1A
gene expression could be targeted by xenobiotic agents such
as PAHs. These compounds are extensively metabolized in
the liver, and have been shown to impair certain metabolic
pathways [13,14] and to potentiate the deleterious effects of
hepatotoxic agents such as paracetamol [15]. We have ob-
served that 3-MC administration to rats led to a significant
reduction in liverMAT1A steady-state mRNA levels after
four days of daily oral administration. The reduction in
MAT1AmRNA levels was accompanied by the induction of
the expression ofCYP1A1, a well-characterized xenobiotic-

responsive gene [18]. In order to demonstrate whether the
observed response of theMAT1Agene was a direct effect of
3-MC on the hepatic parenchyma and not just the conse-
quence of any other systemic interaction of this agent,
further experiments were carried out in isolated cultured rat
hepatocytes. Data collected in this experimental setting in-
dicated that liverMAT1A is indeed targeted by 3-MC.
MAT1A mRNA and MAT I/III protein levels were down-
regulated in a dose- and time-dependent fashion. In addi-
tion, MAT1A expression was also inhibited by B[a]P, a
carcinogen of the PAH group and a widespread environ-
mental pollutant. The simultaneous induction ofCYP1A1
mRNA was observed in response to 3-MC and B[a]P,

Fig. 5. Mechanism ofMAT1A mRNA down-regulation by 3-MC. Effect of AdoMet treatment. (A) Effect of 3-MCMAT1A mRNA stability in cultured
hepatocytes. Cells were treated for 2 hr with ActD (5mg/mL), and then 3-MC (5mM) or DMSO (controls) was added to the culture medium and incubations
continued for the indicated periods of time.MAT1AmRNA levels were measured in 3-MC-treated cells (open circles) and in controls (closed diamonds) by
Northern blotting. 18S rRNA hybridization was performed as loading control. Data are means6 SEM of two independent experiments done in triplicate.
(B) Effect of 3-MC onMAT1Apromoter-driven transcription. Hepatocytes were transfected with a construction containing a luciferase reporter gene under
the control of the ratMAT1Apromoter (see Materials and Methods for details). After transfection, cells were incubated for 24 hr in the presence of DMSO
(controls), 3-MC (5mM), or 3-MC plus AdoMet (2 mM), and luciferase activity was then assayed. Data are means6 SEM of three independent experiments
done in triplicate (*P , 0.05 compared with the control value). (C) AdoMet treatment prevents the reduction inMAT1AmRNA levels induced by 3-MC.
Hepatocytes were incubated for 24 hr with DMSO (controls), AdoMet (4 mM), 3-MC (5mM), or both agents simultaneously, and thenMAT1AmRNA levels
were determined by Northern blotting (*P , 0.05compared with the control value, **P , 0.05compared with the control value, ***P , 0.05compared
with 3-MC value). (D) AdoMet reverses the effect of 3-MC onMAT1AmRNA levels in cultured hepatocytes. Hepatocytes were incubated in the absence
(controls) (open circles) or presence (closed circles) of 5mM 3-MC, and after 12 hr AdoMet (4 mM) was added to half of the plates for each condition.
MAT1AmRNA levels in cells treated (closed triangles) or untreated (open triangles) with 3-MC were determined 12 hr after the addition of AdoMet (*P ,
0.05 compared with control values, **P , 0.05 compared with values obtained in cultures without AdoMet treatment). Data are means6 SEM of three
independent experiments done in triplicate.
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indicating that the decrease inMAT1Aexpression was spe-
cific and not the consequence of an overall derangement of
the cellular gene transcription machinery by PAH treatment.
It was important to know whether 3-MC-mediated down-
regulation ofMAT1Aexpression involved the ligand-depen-
dent transcription factor AhR, which is responsible for most
of the gene-regulatory effects of this kind of compounds
[43]. To this end, we treated cultured hepatocytes with a
high dose of the potent AhR agonist TCDD and found that
MAT1A mRNA levels were unaffected, while there was a
marked induction ofCYP1A1expression. In addition, we
observed that the AhR antagonista-NF [35] did not inter-
fere with the effect of 3-MC onMAT1A mRNA down-
regulation. All this suggested that the AhR was not impli-
cated in the observed effect of 3-MC onMAT1Aexpression.
Alternative mechanisms have been proposed to explain the
effects of PAHs on gene expression [24,44,45]. Other pro-
tein receptors for this family of compounds have been
characterized. Such is the case of the PAH-binding protein,
also known as the 4S receptor, according to its sedimenta-
tion in the 4S fraction of sucrose density gradients [46]. This
receptor has been identified as glycineN-methyltransferase,
although this is still a controversial issue [47,48]. The 4S
receptor does not bind TCDD, and certain PAHs that are not
ligands of the AhR, such as B[e]P, have been shown to
induce CYP1A1gene expression through binding to this
receptor [45,46]. Our observation that B[e]P, but not
TCDD, down-regulatedMAT1A expression may suggest
that the 4S receptor could play a role in this process.

The generation of free radicals and the concomitant re-
duction of intracellular GSH levels has been proposed as
another mechanism activated by 3-MC and other chemical
agents which may influence gene expression [37,38]. For
instance, this has been demonstrated for the 3-MC-mediated
up-regulation of the glutathioneS-transferaseYa gene,
which can be abolished in the presence of reducing agents
[37]. Our present evidence regardingMAT1Aregulation by
3-MC indicates that this gene is not responsive to variations
in the prooxidant status of the hepatocytes, as suggested by
the lack of protection from 3-MC effects by reducing agents
such as NAC and EGSH.

Certain xenobiotics have been shown to impair glucocor-
ticoid actionsin vivoand in cultured hepatocytes. 3-MC has
been demonstrated to affect the activities of glucocorticoid
hormone-regulated enzymes in rat liver, probably through
the functional decrease of the cytosolic glucocorticoid re-
ceptor [26,49]. Glucocorticoid hormones are potent stimu-
lators ofMAT1Aexpression in rat liver [36]. In the case of
MAT1A, we have excluded this possibility by showing that
3-MC was activein vitro in the absence of glucocorticoids
and that the presence of 3-MC did not impairMAT1A
responsiveness to this hormone. In addition, other xenobi-
otics such as phenobarbital and TCDD have been shown to
equally impair glucocorticoid receptor functions [26], al-
though these compounds were without effect onMAT1A
gene expression.

Down-regulation ofMAT1Aexpression by 3-MC seems
to take place at the transcriptional level. This can be inferred
by the lack of effect of this PAH onMAT1AmRNA stabil-
ity, while transcription from aMAT1A promoter–reporter
construct was inhibited by 3-MC. However, the precise
promoter element or elements involved in this response to
3-MC are not yet known, and we cannot rule out the pos-
sibility that this effect was mediated through an indirect
mechanism. As previously mentioned, we have recently
shown that AdoMet plays a key role in the maintenance of
MAT1Agene expression in rat hepatocytes, with this effect
taking place at the transcriptional level and involving a
methylation reaction [10]. We and others have shown that
by increasing extracellular AdoMet concentration above
certain levels, the intracellular pool of this compound can be
increased [10,50,51]. Now we observe that by adding
AdoMet to 3-MC-treated cells, the down-regulation of
MAT1A mRNA steady-state levels and promoter activity
can be prevented. Furthermore, AdoMet was able to reverse
the effect of 3-MC onMAT1Aexpression when this com-
pound was added to hepatocytes that had been pretreated for
12 hr with 3-MC. In our in vivo experiments,MAT1A
mRNA was reduced in response to 3-MC, while the hepatic
levels of AdoMet were not yet significantly different from
controls. This observation suggests that 3-MC could inter-
fere with AdoMet-mediated induction ofMAT1A expres-
sion, before the cellular concentrations of this metabolite
fall due to decreased MAT I/III protein synthesis. It is
known that 3-MC, and other PAHs such as B[a]P and
B[e]P, are metabolized in the liver to reactive electrophiles
[52]. As these positively charged intermediaries bear a for-
mal resemblance to the positively charged AdoMet mole-
cule, competition for the same intracellular site, which may
be a methyltransferase enzyme, may ensue. In this regard, it
has been demonstrated that the mammalian methyltrans-
ferase that catalyzes DNA methylation can be inhibited by
reactive B[a]P metabolites [53]. This hypothesis may also
contribute to explain the differential effects of PAHs (3-
MC, B[a]P, and B[e]P) and the dioxin TCDD onMAT1A
expression in the hepatocyte: while these PAHs can be
metabolized to charged reactive intermediates, the dioxin
TCDD does not seem to be.

In summary, we have identified theMAT1A gene as a
novel target for PAH action in rat liver. Given the central
role played by AdoMet in cellular metabolism, the preser-
vation ofMAT1Aexpression, and thus of AdoMet synthesis,
is essential for the maintenance of liver functions. Exposure
to PAHs, which can be found in tobacco smoke, coal tar, air
pollutants, and petroleum [12], may compromise the hepatic
availability of AdoMet, and consequently make this organ
more sensitive to other well-known hepatotoxic agents such
as ethanol and paracetamol. In addition, our present obser-
vations on the effect of AdoMet on the down-regulation of
MAT1A gene expression by PAHs provide novel insights
into the mechanisms of the hepatoprotective action of this
molecule.
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