99 research outputs found

    A study of early Christian symbols and their use in a contemporary church interior

    Get PDF
    None provided

    Iron biofortification of staple crops - lessons and challenges in plant genetics

    Get PDF
    Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron (and zinc) levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population

    Iron homeostasis in plants - a brief overview

    Get PDF
    Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans alike. Although plentiful in the Earth's crust it is not usually found in a form readily accessible for plants to use. They must therefore sense and interact with their environment, and have evolved two different molecular strategies to take up iron in the root. Once inside, iron is complexed with chelators and distributed to sink tissues where it is used predominantly in the production of enzyme cofactors or components of electron transport chains. The processes of iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is important for human nutrition as seeds form the edible parts of many crop species. As such, increasing iron in seeds and other tissues is a major goal for biofortification efforts by both traditional breeding and biotechnological approaches

    Evaluation and visualisation of risk to water resources

    Get PDF

    Wheat Vacuolar Iron Transporter TaVIT2 transports Fe and Mn and is effective for biofortification

    Get PDF
    Increasing the intrinsic nutritional quality of crops, known as biofortification, is viewed as a sustainable approach to alleviate micronutrient deficiencies. In particular iron deficiency anaemia is a major global health issue, but the iron content of staple crops such as wheat is difficult to change because of genetic complexity and homeostasis mechanisms. To identify target genes for biofortification of wheat (Triticum aestivum), we functionally characterized homologs of the Vacuolar Iron Transporter (VIT). The wheat genome contains two VIT paralogs, TaVIT1 and TaVIT2, which have different expression patterns, but are both low in the endosperm. TaVIT2, but not TaVIT1, was able to rescue growth of a yeast mutant lacking the vacuolar iron transporter. TaVIT2 also complemented a manganese transporter mutant, but not a vacuolar zinc transporter mutant. By over-expressing TaVIT2 under the control of an endosperm-specific promoter, we achieved a > 2-fold increase in iron in white flour fractions, exceeding minimum legal fortification levels in countries such as the UK. The anti-nutrient phytate was not increased and the iron in the white flour fraction was bioavailable in-vitro, suggesting that food products made from the biofortified flour could contribute to improved iron nutrition. The single-gene approach impacted minimally on plant growth and was also effective in barley. Our results show that by enhancing vacuolar iron transport in the endosperm, this essential micronutrient accumulated in this tissue bypassing existing homeostatic mechanisms

    Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling

    Get PDF
    Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake

    Work-related stress in a humanitarian context: a qualitative investigation

    Get PDF
    There is a paucity of research into the subjective stress-related experiences of humanitarian aid workers (HAWs). Most studies investigating stress in HAWs focus on trauma and related conditions or adopt a quantitative approach. This interview-based study explored how HAWs (n=58) employed by a United Nations aligned organisation perceived the transactional stress process. Thematic analysis revealed eight main themes. An emergency culture was found where most employees felt compelled to offer an immediate response to humanitarian needs. Employees experienced a strong identification with humanitarian goals and reported high engagement. The rewards of humanitarian work were perceived as motivating and meaningful. Constant change and urgent demands resulted in work overload. Managing work-life boundaries and receiving positive support from colleagues and managers helped buffer perceived stress, work overload and negative health outcomes. The practical implications of the results are discussed and suggestions made in light of current research and stress theory

    Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling

    Get PDF
    Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake

    Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants

    Get PDF
    Iron (Fe) is an essential nutrient for plants, but at the same time its redox properties can make it a dangerous toxin inside living cells. Homeostasis between uptake, use and storage of Fe must be maintained at all times. A small family of unique hemerythrin E3 ubiquitin ligases found in green algae and plants play an important role in avoiding toxic Fe overload, acting as negative regulators of Fe homeostasis. Protein interaction data showed that they target specific transcription factors for degradation by the 26S proteasome. It is thought that the activity of the E3 ubiquitin ligases is controlled by Fe binding to the N-terminal hemerythrin motifs. Here we discuss what we have learned so far from studies on the HRZ (Hemerythrin RING Zinc finger) proteins in rice, the homologous BTS (BRUTUS) and root-specific BTSL (BRUTUS-LIKE) in Arabidopsis. A mechanistic model is proposed to help focus future research questions towards a full understanding of the regulatory role of these proteins in Fe homeostasis in plants

    Subcellular dynamics studies of iron reveal how tissue‐specific distribution patterns are established in developing wheat grains

    Get PDF
    Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 ( 57Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies
    corecore