11,955 research outputs found

    Thermal Radiation Analysis System (TRASYS)

    Get PDF
    A user's manual is presented for TRASYS, which is a digital software system with a generalized capability for solving radiation problems. Subroutines, file, and variable definitions are presented along with subroutine and function descriptions for the preprocessor. Definitions and descriptions of components of the processor are also presented

    Extended Hodge Theory for Fibred Cusp Manifolds

    Get PDF
    For a particular class of pseudo manifolds, we show that the intersection cohomology groups for any perversity may be naturally represented by extended weighted L2L^2 harmonic forms for a complete metric on the regular stratum with respect to some weight determined by the perversity. Extended weighted L2L^2 harmonic forms are harmonic forms that are almost in the given weighted L2L^2 space for the metric in question, but not quite. This result is akin to the representation of absolute and relative cohomology groups for a manifold with boundary by extended harmonic forms on the associated manifold with cylindrical ends. As in that setting, in the unweighted L2L^2 case, the boundary values of the extended harmonic forms define a Lagrangian splitting of the boundary space in the long exact sequence relating upper and lower middle perversity intersection cohomology groups.Comment: 26 page

    Query Filtering with Low-Dimensional Local Embeddings

    Get PDF
    The concept of local pivoting is to partition a metric space so that each element in the space is associated with precisely one of a fixed set of reference objects or pivots. The idea is that each object of the data set is associated with the reference object that is best suited to filter that particular object if it is not relevant to a query, maximising the probability of excluding it from a search. The notion does not in itself lead to a scalable search mechanism, but instead gives a good chance of exclusion based on a tiny memory footprint and a fast calculation. It is therefore most useful in contexts where main memory is at a premium, or in conjunction with another, scalable, mechanism. In this paper we apply similar reasoning to metric spaces which possess the four-point property, which notably include Euclidean, Cosine, Triangular, Jensen-Shannon, and Quadratic Form. In this case, each element of the space can be associated with two reference objects, and a four-point lower-bound property is used instead of the simple triangle inequality. The probability of exclusion is strictly greater than with simple local pivoting; the space required per object and the calculation are again tiny in relative terms. We show that the resulting mechanism can be very effective. A consequence of using the four-point property is that, for m reference points, there arèarè m 2 ´ pivot pairs to choose from, giving a very good chance of a good selection being available from a small number of distance calculations. Finding the best pair has a quadratic cost with the number of references ; however, we provide experimental evidence that good heuristics exist. Finally, we show how the resulting mechanism can be integrated with a more scalable technique to provide a very significant performance improvement, for a very small overhead in build-time and memory cost. Keywords: metric search · extreme pivoting · supermetric space · four-point property · pivot based index 2 Chávez et al

    Reiter syndrome following protracted symptoms of Cyclospora infection.

    Get PDF
    Two large outbreaks of diarrheal illness associated with Cyclospora cayetanensis, a coccidian parasite, provided an opportunity to evaluate clinical syndromes associated with this enteric pathogen. Reiter syndrome, a triad of ocular inflammation, inflammatory oligoarthritis, and sterile urethritis, has been associated with enteric infections. We describe the first case of Reiter syndrome following protracted symptoms of Cyclospora infection

    Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049

    Get PDF
    The relative importance of the physical processes shaping the thermodynamics of the hot gas permeating rotating, massive early-type galaxies is expected to be different from that in non-rotating systems. Here, we report the results of the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049. The galaxy harbours a dusty disc of cool gas and is surrounded by an extended hot X-ray emitting gaseous atmosphere with unusually high central entropy. The hot gas in the plane of rotation of the cool dusty disc has a multi-temperature structure, consistent with ongoing cooling. We conclude that the rotational support of the hot gas is likely capable of altering the multiphase condensation regardless of the tcool/tfft_{\rm cool}/t_{\rm ff} ratio, which is here relatively high, 40\sim 40. However, the measured ratio of cooling time and eddy turnover time around unity (CC-ratio 1\approx 1) implies significant condensation, and at the same time, the constrained ratio of rotational velocity and the velocity dispersion (turbulent Taylor number) Tat>1{\rm Ta_t} > 1 indicates that the condensing gas should follow non-radial orbits forming a disc instead of filaments. This is in agreement with hydrodynamical simulations of massive rotating galaxies predicting a similarly extended multiphase disc.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Tackling student binge drinking: pairing incongruent messages and measures reduces alcohol consumption

    Get PDF
    Objectives: Excessive alcohol consumption is a persistent problem in Northern European cultures. Across a 2-week period, we tested the effect of varying message frames, message types, and response measures, in reducing alcohol consumption. Design: Three hundred and twenty-three respondents were allocated to a 2 (message frame: gain vs. loss) × 2 (message type: health vs. social) × 2 (response type: engaging vs. refraining) mixed design. Method: Binge drinking and units consumed were measured at Time 1 and Time 2 (2 weeks later). Participants read (following Time 1) a gain- or loss-framed message on binging emphasizing either social or health consequences and answered engaging in or refraining from drinking attitude measures. Results: No main effects were identified. The key finding was that gain-framed messages, when used in conjunction with engage response measures (an incongruous pairing), were highly effective in reducing alcohol consumption 2 weeks later compared with the other message frame/response measure combinations. Conclusions: We suggest that for prevention behaviours, gain-framed messages, when paired with engage response measures, initiate an inconsistency resolution process. Together, our findings emphasize the importance of message frame and response type when seeking to reduce alcohol consumption using persuasive health messages

    High-dimensional simplexes for supermetric search

    Get PDF
    In a metric space, triangle inequality implies that, for any three objects, a triangle with edge lengths corresponding to their pairwise distances can be formed. The n-point property is a generalisation of this where, for any (n+1) objects in the space, there exists an n-dimensional simplex whose edge lengths correspond to the distances among the objects. In general, metric spaces do not have this property; however in 1953, Blumenthal showed that any semi-metric space which is isometrically embeddable in a Hilbert space also has the n-point property. We have previously called such spaces supermetric spaces, and have shown that many metric spaces are also supermetric, including Euclidean, Cosine, Jensen-Shannon and Triangular spaces of any dimension. Here we show how such simplexes can be constructed from only their edge lengths, and we show how the geometry of the simplexes can be used to determine lower and upper bounds on unknown distances within the original space. By increasing the number of dimensions, these bounds converge to the true distance. Finally we show that for any Hilbert-embeddable space, it is possible to construct Euclidean spaces of arbitrary dimensions, from which these lower and upper bounds of the original space can be determined. These spaces may be much cheaper to query than the original. For similarity search, the engineering tradeoffs are good: we show significant reductions in data size and metric cost with little loss of accuracy, leading to a significant overall improvement in exact search performance

    Jost Function for Singular Potentials

    Get PDF
    An exact method for direct calculation of the Jost function and Jost solutions for a repulsive singular potential is presented. Within this method the Schrodinger equation is replaced by an equivalent system of linear first-order differential equations, which after complex rotation, can easily be solved numerically. The Jost function can be obtained to any desired accuracy for all complex momenta of physical interest, including the spectral points corresponding to bound and resonant states. The method can also be used in the complex angular-momentum plane to calculate the Regge trajectories. The effectiveness of the method is demonstrated using the Lennard-Jones (12,6) potential. The spectral properties of the realistic inter-atomic He4-He4 potentials HFDHE2 and HFD-B of Aziz and collaborators are also investigated.Comment: 12 pages, latex, 2 eps-figures, submitted to Phys.Rev.

    Re-ranking Permutation-Based Candidate Sets with the n-Simplex Projection

    Get PDF
    In the realm of metric search, the permutation-based approaches have shown very good performance in indexing and supporting approximate search on large databases. These methods embed the metric objects into a permutation space where candidate results to a given query can be efficiently identified. Typically, to achieve high effectiveness, the permutation-based result set is refined by directly comparing each candidate object to the query one. Therefore, one drawback of these approaches is that the original dataset needs to be stored and then accessed during the refining step. We propose a refining approach based on a metric embedding, called n-Simplex projection, that can be used on metric spaces meeting the n-point property. The n-Simplex projection provides upper- and lower-bounds of the actual distance, derived using the distances between the data objects and a finite set of pivots. We propose to reuse the distances computed for building the data permutations to derive these bounds and we show how to use them to improve the permutation-based results. Our approach is particularly advantageous for all the cases in which the traditional refining step is too costly, e.g. very large dataset or very expensive metric function
    corecore