
High-Dimensional Simplexes

for Supermetric Search

Richard Connor1, Lucia Vadicamo2, and Fausto Rabitti2

1 Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

2 ISTI - CNR, Via Moruzzi 1, 56124 Pisa, Italy
richard.connor@strath.ac.uk

{lucia.vadicamo,fausto.rabitti}@isti.cnr.it

Abstract. 3

In a metric space, triangle inequality implies that, for any three objects,
a triangle with edge lengths corresponding to their pairwise distances can
be formed. The n-point property is a generalisation of this where, for any
(n+1) objects in the space, there exists an n-dimensional simplex whose
edge lengths correspond to the distances among the objects. In general,
metric spaces do not have this property; however in 1953, Blumenthal
showed that any semi-metric space which is isometrically embeddable in
a Hilbert space also has the n-point property.
We have previously called such spaces supermetric spaces, and have
shown that many metric spaces are also supermetric, including Euclidean,
Cosine, Jensen-Shannon and Triangular spaces of any dimension.
Here we show how such simplexes can be constructed from only their
edge lengths, and we show how the geometry of the simplexes can be
used to determine lower and upper bounds on unknown distances within
the original space. By increasing the number of dimensions, these bounds
converge to the true distance.
Finally we show that for any Hilbert-embeddable space, it is possible
to construct Euclidean spaces of arbitrary dimensions, from which these
lower and upper bounds of the original space can be determined. These
spaces may be much cheaper to query than the original. For similarity
search, the engineering tradeoffs are good: we show significant reductions
in data size and metric cost with little loss of accuracy, leading to a
significant overall improvement in exact search performance.

Keywords: Supermetric Space · Metric Search · Metric Embedding · Dimen-
sionality Reduction

1 Introduction

To set the context, we are interested in searching a (large) finite set of objects
S which is a subset of an infinite set U , where (U, d) is a metric space. The

3 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-
319-68474-1

This is a post-peer-review, pre-copyedit version of an article published in Beecks D, Borutta F, Kröger P, Seidl T (eds)
Similarity Search and Applications. SISAP 2017. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-68474-1_7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/199407528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-68474-1_7

2 Connor et al.

general requirement is to efficiently find members of S which are similar to an
arbitrary member of U , where the distance function d gives the only way by
which any two objects may be compared. There are many important practical
examples captured by this mathematical framework, see for example [?,?]. Such
spaces are typically searched with reference to a query object q ∈ U . A threshold
search for some threshold t, based on a query q ∈ U , has the solution set {s ∈
S such that d(q, s) ≤ t}.

This becomes an interesting problem when exhaustive search is intractable, in
which case the research problem is to find ways of pre-processing the collection
ahead of query time in order to minimise the cost of query. There are three
main problems with achieving efficiency. Most obviously, if the search space is
very large, scalability is required. Less obviously, when the search space is large,
semantic accuracy is important to avoid large numbers of false positive results
– in the terminology of information retrieval, precision becomes relatively more
important that recall. To achieve higher semantic accuracy will usually require
more expensive metrics, and larger data representations.

Here, we present a new technique which can be used to address all three of
these issues in supermetric spaces. Using properties of finite isometric embed-
ding, we show a mechanism which allows spaces with certain properties to be
translated into a second, smaller, space. For a metric space (U, d), we describe a
family of functions φn which can be created by measuring the distances among
n objects sampled from the original space, and which can then be used to create
a surrogate space:

φn : (U, d) → (Rn, ℓ2)

with the property

ℓ2(φn(u1), φn(u2)) ≤ d(u1, u2) ≤ g(φn(u1), φn(u2))

for an associated function g.
The advantages of the proposed technique are that (a) the ℓ2 metric is very

much cheaper than some Hilbert-embeddable metrics; (b) the size of elements
of Rn may be much smaller than elements of U , and (c) in many cases we can
achieve both of these along with an increase in the scalability of the resulting
search space.

2 Related Work

Finite Isometric Embeddings are excellently summarised by Blumenthal [?].
He uses the phrase four-point property to mean a space that is 4-embeddable in
3-dimensional Euclidean space: that is, that for any four objects in the original
space it is possible to construct a distance-preserving tetrahedon. Wilson [?]
shows various properties of such spaces, and Blumenthal points out that results
given by Wilson, when combined with work by Menger [?], generalise to show
that some spaces with the four-point property also have the n-point property:
any n points can be isometrically embedded in an (n−1)-dimensional Euclidean

High-Dimensional Simplexes for Supermetric Search 3

space (ℓn−1
2). In a later work, Blumenthal [?] shows that any space which is

isometrically embeddable in a Hilbert space has the n-point property. This single
result applies to many metrics, including Euclidean, Cosine, Jensen-Shannon and
Triangular [?], and is sufficient for our purposes here.

Dimensionality Reduction aims to produce low-dimensional encodings of
high-dimensional data, preserving the local structure of some input data. See
[?,?] for comprehensive surveys on this topic.

The Principal Component Analysis (PCA) [?] is the most popular of the
techniques for unsupervised dimensionality reduction. The idea is to find a linear
transformation of n-dimensional to k-dimensional vectors (k ≤ n) that best
preserves the variance of the input data. Specifically, PCA projects the data
along the direction of its first k principal components, which are the eigenvectors
of the covariance matrix of the (centered) input data.

According to the Johnson-Lindenstrauss Flattening Lemma (JL) (see e.g. [?,
pag. 358]), a projection can also be used to embed a finite set of n euclidean
vectors into a k-dimensional euclidean space space (k < n) with a “small” dis-
tortion. Specifically the Lemma asserts that for any n-points of ℓ2 and every
0 < ǫ < 1 there is a mapping into ℓk2 that preserves all the interpoint distances
within factor 1 + ǫ, where k = O(ǫ−2 log n). The low dimensional embedding
given by the Johnson Lindenstrauss lemma is particularly simple to implement.

General metric spaces do not allow either PCA or JL as these require access
to a coordinate space. Mao et al. [?] pointed out that multidimesional-methods
can be indirectly applied to metric space by using the pivot space model. In that
case each metric object is represented by its distance to a finite set of pivots.

In the general metric space context, perhaps the best known technique is
metric Multidimensional Scaling (MDS) [?]. MDS aims to preserve inter-point

distances using spectral analysis. However, when the number m of data points
is large the classical MDS is too expensive in practice due to a requirement for
O(m2) distance computations and spectral decomposition of a m×m matrix.

The Landmark MDS (LMDS) [?] is a fast approximation of MDS. LMDS uses
a set of k landmark points to compute k ×m distances of the data points from
the pivots. It applies classical MSD to these points and uses a distance-based
triangulation procedure to project the remaining data points.

LAESA [?] is a more tractable mechanism which has been used for metric filter-
ing, rather than approximate search. n reference objects are somehow selected.
For each element of the data, the distances to these points are recorded in a
table. At query time, the distances between the query and each reference point
are calculated. The table can then be scanned row at a time, and each distance
compared; if, for any reference object pi and data object sj the absolute differ-
ence |d(q, pi)− d(sj , pi)| > t, then from triangle inequality it is impossible for sj
to be within distance t of the query, and the distance calculation can be avoided.

4 Connor et al.

Fig. 1: Tetrahedral embedding of four points into 3D Euclidean space.

LAESA can be used as an efficient pre-filter for exact search when memory size
is limited, and we make an experimental comparison with the new lower-bound
mechanism we describe in this paper.

3 Upper and Lower Bounds from Simplexes

For any (n + 1) objects ui in a supermetric space (U, d), there exists a simplex
in ℓn2 where each vertex vi corresponds to one object ui and whose edge lengths
correspond to distances in the original space, i.e. ℓ2(vi, vj) = d(ui, uj).

We show now how this property can be used to give bounds on distances
between two elements of U whose distance cannot be directly measured. This is
useful in many different search paradigms where the bounds are required between
an arbitrary elements si ∈ S ⊂ U which has been pre-processed before a search,
and an element q ∈ U which is not known when the pre-processing occurs.

Our strategy is to choose a set of n reference points P ⊂ U , from which an
isometric (n − 1)-dimensional simplex σ is created. Now, given a further point
u ∈ U , and all the distances d(pi, u), an n-dimensional simplex σu can be created
by the addition of a single vertex to σ.

For simplicity, Figure 1 shows an ℓ32 space into which four objects have been
projected. Here we have only two reference points, p1 and p2. For each element
a the notation va is used to denote a corresponding point in the ℓ32 space. The
distance d(s, q) is not known; however the 4-point property means that the corre-
sponding distance ℓ2(vs, vq) must be able to form the final edge of a tetrahedron.
From this Figure, the intuition of the upper and lower bounds on d(s, q) is clear,
through rotation of the triangle vp1

vp2
vq around the line vp1

vp2
until it is coin-

cident with the plane in which vp1
vp2

vs lies. The two possible orientations give
the upper and lower bounds, corresponding to the distances between vs and the
two apexes apq

−

and apq+ of the two possible planar tetrahedra.

High-Dimensional Simplexes for Supermetric Search 5

The same intuition generalises into many dimensions. The inter-object dis-
tances within a set {pi} of n reference objects are used to form a base simplex
σ0, with vertices vp1

, . . . , vpn
, in (n−1) dimensions. This corresponds to the line

segment vp1
vp2

in the figure, which gives a two-vertex simplex in ℓ12. The simplex
σ0 is contained within a hyperplane of the ℓn2 space, and the distances from ob-
ject s to each pi are used to calculate a new simplex σs, in ℓn2 , consisting of a new
apex point vs set above the base simplex σ0. There are two possible positions in
ℓn2 for vs, one on either side of the hyperplane containing σ0; we denote these as
v+s , and v−s respectively. Now, given the distances between object q and all pi,
there also exist two possible simplexes for σq, with two possible positions for vq
denoted by v+q and v−q .

The process of rotating a triangle around its base generalises to that of ro-
tating the apex point of any simplex around the hyperplane containing its base
simplex. Furthermore, the n-point property guarantees the existence of a sim-
plex σ1 in ℓn+1

2 which preserves the distance d(s, q) as ℓ2(vs, vq). From these
observations we immediately have the following inequalities:

ℓn2 (v
+
s , v

+
q) ≤ d(s, q) ≤ ℓn2 (v

+
s , v

−

q)

Proofs of the correctness of these inequalities are available in [?].

4 Constructing Simplexes from Edge Lengths

In this section, we show a novel algorithm for determining Cartesian coordinates
for the vertices of a simplex, given only the distances between points. The algo-
rithm is inductive, at each stage allowing the apex of an n-dimensional simplex
to be determined given the coordinates of an (n − 1)-dimensional simplex, and
the distances from the new apex to each vertex in the existing simplex. This
is important because, given a fixed base simplex over which many new apexes
are to be constructed, the time required to compute each one is O(n) for n

dimensions, whereas construction of the whole simplex is O(n2)
A simplex is a generalisation of a triangle or a tetrahedron in arbitrary di-

mensions. In one dimension, the simplex is a line segment; in two it is the convex
hull of a triangle, while in three it is the convex hull of a tetrahedron. In general,
the n-simplex of vertices p1, . . . , pn+1 equals the union of all the line segments
joining pn+1 to points of the (n− 1)-simplex of vertices p1, . . . , pn.

The structure of a simplex in n-dimensional space is given as an n+ 1 by n

matrix representing the cartesian coordinates of each vertex. For example, the
following matrix represents four coordinates which are the vertices of a tetrahe-
dron in 3D space:

0 0 0
v2,1 0 0
v3,1 v3,2 0
v4,1 v4,2 v4,3

For all such matrices Σ, the invariant that vi,j = 0 whenever j ≥ i can
be maintained without loss of generality; for any simplex, this can be achieved

6 Connor et al.

Algorithm 1: nSimplexBuild

Input: n+ 1 points p1, . . . , pn+1 ∈ (U, d)
Output: n-dimensional simplex in ℓn2 represented by the matrix Σ ∈ R

(n+1)×n

1 Σ = 0 ∈ R
(n+1)×n;

2 if n = 1 then

3 δ = d(p1, p2);

4 Σ =

[

0
δ

]

;

5 return Σ;

6 end

7 ΣBase = nSimplexBuild(p1, . . . , pn);
8 Distances = 0 ∈ R

n;
9 for 1 ≤ i ≤ n set Distances[i] = d(pi, pn+1);

10 newApex = ApexAddition(ΣBase, Distances);
11 for 1 ≤ i ≤ n and 1 ≤ j ≤ i− 1 set Σ[i][j] to ΣBase[i][j];
12 for 1 ≤ j ≤ n set Σ[n+ 1][j] to newApex[j];
13 return Σ;

by rotation and translation within the Euclidean space while maintaining the
distances among all the vertices. Furthermore, if we restrict vi,j ≥ 0 whenever
j = i − 1 then in each row this component represents the altitude of the ith

point with respect to a base face represented by the matrix cut down from Σ by
selecting elements above and to the left of that entry.

4.1 Simplex Construction

This section gives an inductive algorithm (Algorithm 1) to construct a simplex
in n dimensions based only on the distances measured among n+ 1 points.

For the base case of a one-dimensional simplex (i.e. two points with a single

distance δ) the construction is simply Σ =

[

0
δ

]

. For an n-dimensional simplex,

where n > 1, an (n − 1)-dimensional simplex is first constructed using the dis-
tances among the first n points. This simplex is used as a simplex base to which
a new apex, the (n+ 1)

th
point, is added by the ApexAddition algorithm (Algo-

rithm 2).

For an arbitrary set of objects si ∈ S, the apex φn(si) can be pre-calculated.
When a query is performed, only n distances in the metric space require to be
calculated to discover the new apex φn(q) in ℓn2 .

In essence, the ApexAddition algorithm is derived from exactly the same
intuition as the lower-bound property explained earlier, at each stage lifting the
final dimension out of the same hyperplane into a new dimension to capture
the measured distances. Proofs of correctness for both the construction and the
lower-bound property are available in [?].

High-Dimensional Simplexes for Supermetric Search 7

Algorithm 2: ApexAddition

Input: A (n− 1)-dimensional base simplex and the distances between a new
(unknown) apex point and the vertices of the base simplex:

ΣBase =

0

v2,1 0 0

v3,1 v3,2
. . .

:
. . . 0

vn,1 · · · vn,n−1

∈ R
n×n−1

Distances =
[

δ1 · · · δn
]

∈ R
n

Output: The cartesian coordinates of the new apex point

1 Output =
[

δ1 0 · · · 0
]

∈ R
n;

2 for i = 2 to n do

3 l = ℓ2(ΣBase[i], Output);
4 δ = Distances[i];
5 x = ΣBase[i][i− 1];
6 y = Output[i− 1];
7 Output[i− 1] = y − (δ2 − l2)/2x;

8 Output[i] = +
√

y2 − (Output[i− 1])2;

9 end

10 return Output

8 Connor et al.

4.2 Bounds

Because of the method we use to build simplexes, the final coordinate always
represents the altitude of the apex above the hyperplane containing the base
simplex. Given this, two apexes exist, according to whether a positive or negative
real number is inserted at the final step of the algorithm.

As a direct result of this observation, and those given in Section 3, we have
the following bounds for any two objects s1 and s2 in the original space:

Let

φn(s1) = (x1, x2, . . . , xn−1, xn)

φn(s2) = (y1, y2, . . . , yn−1, yn)

then

√

√

√

√

n
∑

i=1

(xi − yi)2 ≤ d(s1, s2) ≤

√

√

√

√

n−1
∑

i=1

(xi − yi)2 + (xn + yn)2

From the structure of these calculations, it is apparent that they are likely to
converge rapidly around the true distance as the number of dimensions used
becomes higher, as we will show in Section 5. It can also be seen that the cost
of calculating both of these values together, especially in higher dimensions, is
essentially the same as a simple ℓ2 calculation.

Finally, we note that the lower-bound function is a proper metric, but the
upper-bound function is not even a semi-metric: even although it is a Euclidean
distance in the apex space, one of the domain points is constructed by reflection
across a hyperplane and thus the distance between a pair of identical points is
in general non-zero.

5 Measuring Distortion

We define distortion for an approximation (U ′, d′) of a space (U, d) mapped by
a function f : U → U ′ as as the smallest D such that, for some scaling factor r

r · d′(f(ui), f(uj)) ≤ d(ui, uj) ≤ D · r · d′(f(ui), f(uj))

We have measured this for a number of different spaces, and present results
over the SISAP colors benchmark set which are typical and easily reproducible.
Summary results are shown in Figure 2.

In each case, the X-axis represents the number of dimensions used for the
representation, with the distortion plotted against this. For Euclidean distance,
there are two entries for n-simplex: one for randomly-selected reference points,
and the other where the choice of reference points is guided by the use of PCA.
In the latter case we select the first n principal components (eigenvectors of the
covariance matrix) as pivots.

High-Dimensional Simplexes for Supermetric Search 9

1.00

10.00

100.00

1000.00

10000.00

100000.00

1000000.00

1 10 100

D
is

to
rt

io
n

N

SISAP Colors- ы2

 JL flattening

 LMDS

 N-simplex

 PCA

 N-simplex (PCs as pivots)

1.00

10.00

100.00

1000.00

10000.00

1 10 100

D
is

to
rt

io
n

N

SISAP Colors- JSD

 LMDS

 N-simplex

Fig. 2: Distortion measurements for various dimensionality reduction strategies
for the colors data set. The left figure gives measurements for Euclidean distance,
the right for Jensen-Shannon distance where only LMDS and n-simplex are
applicable. The colors data set has 112 physical dimensions.

It can be seen that n-simplex outperforms all other strategies except for
PCA, which is not applicable to non-Euclidean spaces. LMDS is the only other
mechanism applicable to general metric spaces4; this is a little more expensive
than n-simplex to evaluate, and performs relatively badly. The comparison with
JL is a slightly unfair, as the JL lemma applies only for very high dimensions
in an evenly distributed space; we have also tested such spaces, and JL is still
out-performed by n-simplex, especially at lower dimensions.

The distortion we show here is only for the lower-bound function of n-simplex.
We have measured the upper-bound function also, which gives similar results.
Unlike the lower-bound, the upper-bound is not a proper metric; however for
non-metric approximate search it should be noted that the mean of the lower-
and upper-bound functions give around half the distortion plotted here.

The implications of these results for exact search should be noted. For Eu-
clidean search, the distortion has dropped to almost zero at between 20 and 30
dimensions, implying the possibility of accurate search using data which is less
than one-quarter of the original size. For Jensen-Shannon, more dimensions will
be required, but the cost of the ℓ2 metric required to search the compressed space
is around one-hundredth the cost of the original metric. In the next section we
present experimental results consistent with these observations.

6 Exact Search: Indexing with n-Simplex

The simplex-building mechanism, along with the observations of upper and lower
bounds, might be used in many different metric search contexts. Here, we exam-
ine only one of these to demonstrate the potential.

To this end we examine the use of n-simplex in the context of exact search,
using the lower and upper-bound properties. Any such mechanism can be viewed

4 In [?] the authors note it works better for some metrics than for others; in our
understanding, it will work well only for spaces with the n-point property.

10 Connor et al.

as similar to LAESA [?], in that there exists an underlying data structure which
is a table of numbers, n per original object, with the intention of using this table
to exclude candidates which cannot be within a given search threshold.

In both cases, n reference objects are chosen from the space. For LAESA,
each row of the table is filled, for one element of the data, with the distances
from the candidate to each reference object. For n-simplex, each row is filled for
one element of the data with the Cartesian coordinates of the new apex formed
in n dimensions by applying these distances to an (n − 1)-dimensional simplex
formed from the reference objects.

The table having been established, a query notionally proceeds by measuring
the distances from the query object to each reference point object. In the case
of LAESA, the metric for comparison is Chebyshev: that is, if any pairwise
difference is greater than the query threshold, the object from which that row
was derived cannot be a solution to the query. For n-simplex, the metric used is
ℓ2: that is, if the apex represented in a row is further than the query threshold
from the apex generated from the query, again the object from which that apex
was derived cannot be a solution to the query.

In both cases, there are two ways of approaching the table search. It can be
performed sequentially over the whole table, in which case either metric can be
terminated within a row if the threshold is exceeded, without continuing to the
end of the row. Alternatively the table can itself be re-indexed using a metric
index. Although this compromises the amount of space available for the table
itself, it may avoid many of the individual row comparisons.

In the context of re-indexing we also note that, in the case of n-simplex, the
Euclidean metric used over the table rows itself has the four-point property, and
so the Hilbert Exclusion property as described in [?] may be used.

In all cases the result is a filtered set of candidate objects which is guaranteed
to contain the correct solution set. In general, this set must be re-checked against
the original metric, in the original space. For n-simplex however the upper-bound
condition is checked first; if this is less than the query threshold, then the object
is guaranteed to be an element of the result set with no further check required.

6.1 Experiment - SISAP colors

Any such mechanism will perform differently over data sets with different char-
acteristics and we cannot yet provide a full survey. To give useful comparisons
with other studies in the literature, we apply the techniques to the SISAP colors

[?] data set, using three different supermetrics: Euclidean, Cosine, and Jensen-
Shannon5. We chose this data set because (a) it has only positive values and is
therefore indexable by all of the metrics, and (b) it shows an interesting non-
uniformity, in that its intrinsic dimensionality [?] for all metrics is much less than
its physical dimensionality (112). It should thus give an interesting “real world”
context to assess the relative value of the different mechanisms. Although it is
a relatively small set, further experiments performed on much larger sets with

5 For precise definitions of the non-Euclidean metrics used, see [?].

High-Dimensional Simplexes for Supermetric Search 11

Table 1: Elapsed Times - SISAP colors, Euclidean distance.
All times are in seconds, for executing 11268 queries over 101414 data. The Tree
times are independent of the row as reference points are not used.

t0 = 0.051768 t1 = 0.082514 t2 = 0.131163

Dims Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree

5 18.6 28.0 13.8 5.8 5.5 33.4 80.9 22.4 29.0 18.1 56.2 201.6 34.9 70.4 54.4
10 17.7 22.1 15.0 3.3 30.3 67.9 20.3 14.7 58.1 220.3 25.5 50.6
15 16.3 15.2 14.6 3.0 26.7 59.7 20.2 12.1 45.8 159.5 24.4 44.7
20 19.0 16.3 18.9 3.3 28.2 56.6 19.4 11.5 46.8 189.3 27.8 48.3
25 22.5 16.9 20.4 3.4 27.4 56.8 22.3 13.4 45.5 167.5 26.2 40.1
30 20.9 16.8 20.4 3.5 28.6 57.3 24.5 13.6 45.9 181.2 28.5 45.1
35 22.0 16.4 21.3 3.9 28.7 65.0 22.5 13.9 43.9 163.0 31.2 44.9
40 23.1 17.3 22.1 4.0 28.8 55.9 22.8 14.3 49.4 180.5 34.2 46.1
45 22.5 18.7 22.2 4.4 32.0 61.5 27.7 15.0 48.5 169.8 37.1 44.9
50 21.3 17.1 18.9 4.5 32.0 59.0 24.0 15.5 55.2 207.6 34.5 45.3

different properties give quite consistent results, which we do not have space to
report here.

For Euclidean distance, we used the three benchmark thresholds; for the
other metrics, we chose thresholds that return around 0.01% of the data. In all
cases the first 10% of the file is used to query the remaining 90%. Pivots are
randomly-selected both for LAESA and n-simplex approach.

For each metric, we tested different mechanisms with different allocations
of space: 5 to 50 numbers per data element, thus the space used per object is
between 4.5% and 45% of the original. All results reported are for exact search,
that is the initial filtering is followed by re-testing within the original space where
required. Five different mechanism were tested, as follows:

sequential LAESA (Lseq) each row of the table is scanned sequentially, each
element of each row is tested against the query and that row is abandoned
if the absolute difference is greater than the threshold.

reindexed LAESA (Lrei) the data in the table is indexed using a monotone
hyperplane tree, searched using the Chebyshev metric.

sequential n-simplex (Nseq) each row of the table is scanned sequentially, for
each element of each row the square of the absolute difference is added to
an accumulator, the row is abandoned if the accumulator exceeds the square
of the threshold, and the upper-bound is applied if the end of the row is
reached before re-checking in the original space.

reindexed n-simplex (Nrei) the data in the table is indexed using a monotone
hyperplane tree using the Hilbert Exclusion property, and searched using
the Euclidean metric; the upper-bound is applied for all results, before re-
checking in the original space.

normal indexing (Tree) the space is indexed using a monotone hyperplane
tree with the Hilbert Exclusion property, without the use of reference points.

12 Connor et al.

Table 2: Elapsed Times - SISAP colors with Cosine and Jensen-Shannon dis-
tances, and a 30-dimensional generated Euclidean space.
All times are in seconds. The generated Euclidean space is evenly distributed in
[0, 1]30, and gives the elapsed time for executing 1,000 queries against 9,000 data,
with a threshold calculated to return one result per million data (t=0.7269)

SISAP colors
30-dim ℓ302Cosine (t=0.042) Jensen-Shannon (t=0.135)

Dims Lseq Lrei Nseq Nrei Tree Lseq Lrei Nseq Nrei Tree Dims Lseq Lrei Nseq Nrei Tree

5 10.3 4.5 8.8 1.0 3.1 248.4 335.5 61.9 65.5 124.8 3 0.5 2.5 0.5 1.6 1.4
10 9.8 3.4 10.4 0.8 155.3 233.2 29.0 29.3 6 0.5 2.3 0.5 1.8
15 12.7 2.4 11.7 0.7 103.5 163.2 22.3 17.2 9 0.5 2.4 0.4 1.3
20 16.5 2.8 16.7 0.7 95.7 162.8 23.8 14.7 12 0.5 2.6 0.3 1.2
25 17.9 2.8 17.7 0.8 87.2 155.6 25.9 16.1 15 0.5 2.8 0.3 1.0
30 18.1 2.6 17.4 0.9 67.7 130.4 27.0 16.5 18 0.6 3.4 0.3 1.0
35 17.7 3.1 17.1 1.1 69.6 136.3 27.9 17.2 21 0.6 3.3 0.2 1.1
40 18.1 3.0 18.1 1.0 62.4 131.2 27.8 17.1 24 0.7 2.9 0.2 1.1
45 17.4 2.7 18.2 1.1 61.1 133.4 29.7 18.4 27 0.7 3.5 0.3 1.2
50 17.6 3.5 17.3 1.4 58.3 130.4 30.6 18.6 30 0.7 3.5 0.3 1.4

The monotone hyperplane tree is used as, in previous work, this has been
found to be the best-performing simple indexing mechanism for use with Hilbert
Exclusion.

Measurements different figures are measured for each mechanism: the elapsed
time, the number of original-space distance calculations performed and, in the
case of the re-indexing mechanisms, the number of re-indexed space calculations.
All code is available online for independent testing6.

The tests were run on a 2.8 GHz Intel Core i7, running on an otherwise
bare machine without network interference. The code is written in Java, and all
data sets used fit easily into the Java heap without paging or garbage collection
occurring.

Results As can be seen in Table 1, Nrei consistently and significantly outper-
forms the normal index structure at between 15 and 25 dimensions, depending
on the query threshold. It is also interesting to see that, as the query thresh-
old increases, and therefore scalability decreases, Nseq takes over as the most
efficient mechanism, again with a “sweet spot” at 15 dimensions.

Table 2 shows the same experiment performed with Cosine and Jensen-
Shannon distances. In these cases, the extra relative cost saving from the more
expensive metrics is very clear, with relative speedups of 4.5 and 8.5 times respec-
tively. In the Jensen-Shannon tests, the relatively very high cost of the metric
evaluation to some extent masks the difference between Nseq and Nrei, but we
note that the latter maintains scalability while the former does not. Finally, in
the essentially intractable Euclidean space, with a relatively much smaller search
threshold, Nseq takes over as the fastest mechanism.
6 https://richardconnor@bitbucket.org/richardconnor/metric-space-framework.git

High-Dimensional Simplexes for Supermetric Search 13

Table 3: Distance Calculations Performed in Original and Re-indexed Space
(figures given are thousands of calculations per query)

Euclidean (t=0.051768) Jensen-Shannon (t=0.135)

Original Space Re-indexed Original Space Re-indexed

Dims L N Tree Lrei Nrei L N Tree Lrei Nrei

5 2.75 0.38 1.48 5.28 1.76 12.77 2.29 5.97 18.40 6.91

10 1.33 0.05 1.48 4.40 1.23 7.81 0.58 5.97 19.66 6.32

15 0.57 0.04 1.48 3.24 1.13 4.62 0.16 5.97 15.46 4.99

20 0.51 0.03 1.48 3.42 1.15 3.89 0.11 5.97 15.85 4.80

25 0.43 0.04 1.48 3.15 1.18 3.65 0.09 5.97 14.88 4.87

30 0.37 0.04 1.48 3.02 1.21 2.53 0.08 5.97 13.83 4.70

35 0.34 0.04 1.48 2.85 1.31 2.59 0.08 5.97 13.56 4.86

40 0.33 0.04 1.48 2.95 1.29 2.14 0.08 5.97 13.48 4.64

45 0.31 0.05 1.48 2.82 1.32 1.95 0.08 5.97 13.74 4.89

50 0.27 0.05 1.48 2.57 1.33 1.83 0.08 5.97 12.63 4.87

Scalability Table 3 shows the actual number of distance measurements made,
for Euclidean and Jensen-Shannon searches of the colors data. The number of
calls required in both the original and re-indexed spaces are given. Note that
original-space calls are the same for both table-checked and re-indexed mecha-
nisms; the number of original-space calls include those to the reference points,
from which the accuracy of the n-simplex mechanism even in small dimensions
can be appreciated. By 50 dimensions almost perfect accuracy is achieved for
Euclidean search 50 original-space calculations are made, but in fact even at
10 dimensions almost every apex value can be deterministically determined as
either a member or otherwise of the solution set based on its upper and lower
bounds. At 20 dimensions, only 10 elements of the 101414-element data set have
bounds which straddle the query threshold. This indeed reflects the results pre-
sented in Figure 2 where it is shown that for n ≥ 20 the n-simplex lower bound
is practically equivalent to the Euclidean distance to search colors data.

Equally interesting is the number of re-indexed distance measurements. This
requires further investigation: for n-simplex, these are generally less than for
the original space. This seems to hold for all data other than perfectly evenly-
distributed (generated sets), for which the scalability is the same. The impli-
cation is that the re-indexed metric has better scalability properties than the
original, although we would have expected indexing over the lower-bound func-
tion to be less, rather than more, scalable.

7 Conclusions and Further Work

Based on observations made over half a century ago, we have observed that a
class of useful metric spaces have the n-point property. We have discovered a
practical application for this previously abstract knowledge, by showing that
irregular simplexes of any dimension can be constructed from only their edge

14 Connor et al.

lengths. This then allows upper and lower bounds to be calculated for any two
objects, when the only knowledge available is their respective distances to a fixed
set of reference objects.

There are a number of ways in which this knowledge can be used towards
efficient search for suitable spaces. We have so far examined only one in detail,
where a Euclidean space is extracted and used to pre-filter exact search. Over
the benchmark SISAP colors data set, for some different metrics, this technique
gives the best-recorded performance for exact search. However we believe the
real power of this technique will emerge with huge data sets and more expensive
metrics, and is yet to be experienced.

Acknowledgements The work was partially funded by Smart News, “Social sensing

for breaking news”, co-funded by the Tuscany region under the FAR-FAS 2014 program,

CUP CIPE D58C15000270008.

