DRL Line Item 7 NASA CR-

Programmer's May
Manual


Thermal Radiation Analysis System T A S
$\mathbf{Y}$
$S$


Programmer's
Manual
May 1974
THERMAL RADIATION

## ANALYSIS SYSTEM

T
R
A
S
Y
S

## Authors:

Robert J. Connor
Ronald E. Paulson
Richard G. Goble
Carl L. Jensen

Approved


Car! L. Jensen
Program Manager
MARTIN MARIETTA CORPORATION
P.O. Box 179

Denver, Colorado 80201

The Martin Marietta Thermal Radiation Analyzer System (TRASYS) program marks the first instance that thermal radiation analysis has been put on the same basis as thermal analysis using program systems such as MITAS and SINDA. As with these thermal analyzer programs, the user is provided the powerful options of writing his own executive or driver 1ogic and choosing, among several available options, the most desirable solution techniques for the problem at hand. In addition, TRASYS provides many features never before available in a single radiation analysis program. Among the more important are:

- A 1000-node problem size capability with shadowing by intervening opaque or semitransparent surfaces;
- A choice of diffuse, specular, or diffuse/specular radiant interchange solutions;
- A capability for time-variant geometry in orbit;
- A choice of analytically determined or externally supplied shadow data for environmental flux calculations;
- Form factors and environmental fluxes computed using an internally-optimized number of surface grid elements, selected on the basis of user-supplied accuracy criteria;
- A general editing capability for updating thermal radiation model data stored on tape;
- A plot package that provides a pictorial representation of the user's geometry.

TRASYS is indebted to a number of predecessor programs in the thermal radiation analysis field. The major contributors were HEATRATE, MTRAP version 2.0 , RADFAC, and the MRI computer program for determining external radiation absorbed by the Apollo spacecraft.

This programmers' manual represents an effort to provide scientific programming personnel with the descriptive material necessary to reach an understanding of the various program segments. Due to the highly modularized design of TRASYS, there are 166 preprocessor subroutines and over 300 processor library subroutines described herein. Although this is a rather large number in total, the individual subroutines have a more moderate size, so that the user can develop a working understanding of any routine after devoting a reasonable amount of effort to reading the Fortran code and consulting the appropriate material herein.

This manual was generated for the National Aeronautics and Space Administration's Lyndon B. Johnson Spacecraft Center under NASA Contract NAS9-13033, Development of a Thermal Radiation Analysis/ Heat Rate Computer Program System. The technical monitoring for this program was provided by Mr. Robert A. Vogt of the Thermal Technology Branch of the Structures and Mechanics Division, NASA Lyndon B. Johnson Space Center. His helpful suggestions during the development of TRASYS are gratefully acknowledged.

TRASYS would not exist without the superb design and programming efforts of Messrs. Ronald E. Paulson and Robert J. Connor, who were responsible for generating the majority of the TRASYS code. Their efforts are gratefully acknowledged. Extensive thanks are also due Mr. G. M. Holmstead for his efforts in developing the direct irradiation program segment and for the valuable consulting effort he performed during the course of program development. Mr. Richard G. Goble is also recognized for his praiseworthy efforts in developing the specular-diffuse radiation interchange segment, the orbit plotter segment, and for his solutions of many knotty problems that cropped up during program checkout.
Page
I. INTRODUCTION ..... I-1
A. What Is TRASYS? ..... I-1
B. System Structure ..... I-2
andI-3
II. PART 1 - PREPROCESSOR ..... II-1
A. Segment Definitions ..... II-1
B. Subroutine and Function Descriptions Preprocessor ..... II-9
C. File Definitions - Preprocessor ..... II-85
D. Variable Definitions - Preprocessor ..... II-93
thruII-101
III. PART 2 - PROCESSOR LIBRARY ..... III-1
A. Segment Definitions ..... III-1
B. Subroutine and Function Descriptions - Processor Library ..... III-17
C. File Definitions - Processor Library ..... III-123
D. Variable Definitions - Processor Library ..... III-131
thruIII-161
Figure
I-1 Basic Flow in Using an Applications Program ..... I-2
I-2 Basic Flow in Using TRASYS ..... I-2
I-3 Internal Flow of TRASYS ..... I-3
II-1 Diagram of Preprocessor Segment Structure ..... II-2
III-1 Segment AQCAL Flow Diagram ..... III-2
III-2 Segment DICAL Flow Diagram ..... III-3
III-3 Segment DRCAL Flow Diagram ..... III-4
III-4 Segment FFCAL Flow Diagram ..... III-5
III-5 Segment RBCAL Flow Diagram ..... III-6
III-6 Segment GBCAL Flow Diagram ..... III-8
III-7 Segment NPLOT Flow Diagram ..... III-9
III-8 Segment OPLOT Flow Diagram ..... III-10
III-9 Segment PLOT Flow Diagram ..... III-11
III-10 Segment QOCAL Flow Diagram ..... III-13
III-II Segment RCCAL Flow Diagram ..... III-14
III-12 Segment RKCAL Flow Diagram ..... III-15
III-13 Segment SFCAL Flow Diagram ..... III-16
I. INTRODUCTION


## I. INTRODUCTION

## A. WHAT IS TRASYS?

TRASYS, the Martin Marietta Thermal Radiation Analysis System, is a digital computer software system with a generalized capability to solve the radiation-related aspects of thermal analysis problems. When used in conjunction with a generalized thermal analysis program such as the Systems Improved Numerical Differencing Analyzer (SINDA) program, any thermal problem that can be expressed in terms of a lumped-parameter, radiation-conductor thermal network can be solved.

The function of TRASYS is twofold. It provides:

1) Internode radiation interchange data;
2) Incident and absorbed heat rate data from environmental radiant heat sources.

Data of both types are provided in a format directly usable by the thermal analyzer programs.

A primary feature of TRASYS is that it allows the user to write his own executive or driver program, which organizes and directs the program library routines to solve each specific problem in the most expeditious manner. The user also may write his own output routines; thus, the data output can directly interface with any thermal analyzer using the $\mathrm{R}-\mathrm{C}$ network concept.

Other outstanding features of TRASYS include:

1) A 1000-node allowable problem size;
2) The ability to accommodate time-variable problem geometry;
3) An editing capability that allows the combination or separation of multiple thermal radiation models;
4) A plot package that provides pictorial plots of input geometry and orbit data, as well as output data.

The TRASYS system consists of two major components: the preprocessor, and the processor library. The preprocessor has two major functions. First, it reads and converts the user's geometry input data into the form used by the processor library routines. Second, it accepts the user's driving logic (written in the TRASYSmodified FORTRAN language) that directs user-provided and/or
library consists of FORTRAN language routines that perform the functions commonly needed by the user. The user has, in some cases, a choice of solution techniques for performing the same function.

SYSTEM STRUCTURE

In the usual engineering environment, a programmer is commissioned to prepare an applications program that is subsequently made available to the engineer on a production basis. The engineer supplies input data and receives output data, as shown in Figure I-1.


Figure I-1
Basic Flow in Using an Applications Program
In most cases, changes to the logic and equations are difficult for the program user to implement conveniently since they must be written in a computer-oriented language and may be submitted through a formal programming organization. When TRASYS is used, however, the engineer need only call on the programmer to supply a standard deck of computer-oriented "control cards" that will call the various elements of the system into action in the proper sequence. The engineer then formulates his problem in the engineering-oriented TRASYS language, assembling both data and solution techniques (i.e., logic and equations) into this card deck, which then serves as the complete input to the TRASYS system. Programmer support has been minimized since the bulk of the programming effort is already built into the TRASYS preprocessor and processor library. The engineering user need only specify the data and the order and type of "program building blocks" he deems necessary to solve his problem (see Fig. I-2).


Eigure I-2 Basic Elow in Using TRASYS
It should be evident that TRASYS is much more than an applications program. It has, in fact, all the functions and capabilities of a special-purpose operating system. Since most computers currently used in engineering environments already have operating systems built around a FORTRAN compiler, TRASYS is designed to augment the
existing FORTRAN system. Hence, the TRASYS library serves as an extension to the existing FORTRAN library, and the TRASYS program serves as a preprocessor to (i.e., it preceeds) the existing FORTRAN compiler. This augmentation arrangement is illustrated in Figure $\mathrm{I}-3$.


## Figure I-3 Intemal Flow of TRASYS

When using the full capability of TRASYS, the user will be required to exert a programming effort of sorts, in a language consisting of FORTRAN statements and problem-oriented TRASYS statements that are FORTRAN-related. This, together with the wide variety of options and features offered by the system, suggests an appropriate word of caution: TRASYS is a comprehensive system that cannot be mastered overnight. Nevertheless, to help the novice user, we have attempted to default much of the required input to normally used values so that the user need not define them.
II. PART 1 - PREPROCESSOR
A. SEGMENT DEFINITIONS
II. PART 1 - PREPROCESSOR
A. SEGMENT DEFINITIONS
SEGMENT NAME: ..... TRASYS
PURPOSE: Driver segment of the TRASYS preprocessor (see Fig. II-1).
CALLING SEGMENT: None
SEGMENTS CALLED: START LOGIC0 ..... RAPUP
DATARD ..... TPGEN
SEGMENT NAME: START
PURPOSE: This segment is the main driver segment for the pre- processor initalization, model collector, source editor, and edit output tape generator segments.
CALLING SEGMENT: TRASYS
SEGMENTS CALLED: INITAL ..... SEDIT
MCOL GNEDO
SEGMENT NAME: INITAL
PURPOSE: This segment initializes the preprocessor-labeled common, writes the TRASYS banner on the output file, and reads in and processes the OPTION DATA block.
CALLING SEGMENT: START
SEGMENTS CALLED: None
SEGMENT NAME: MCOL
PURPOSE: This segment combines models that reside on separate edit output tapes. The output of segment MCOL is the EMERG file.
CALLING SEGMENT: START
SEGMENTS CALLED: None


Figure II-1 Diagram of Preprocessor Segment Structure
SEGMENT NAME: SEDIT
PURPOSE: This segment performs the source edit function of the preprocessor. Input data are read from the INPUT, CMERG, EMERG, and EDITI files and output is written to the DATAI file.
CALLING SEGMENT: ..... START
SEGMENTS CALLED: None
SEGMENT NAME: GNEDO
PURPOSE: This segment generates the EDITO file from the DATAI and EDITI files.
CALLING SEGMENT: START
SEGMENTS CALLED: None
SEGMENT NAME: DATARD
PURPOSE: This segment is the main driver segment that reads in and processes the user's data input block.
CALLING SEGMENT: TRASYS
SEGMENTS CALLED: QUANRD
ARRYRD
SKIRD ..... BCSRD
DWRD FRMFRD
CRSPRD
SEGMENT NAME: QUANRD
PURPOSE: This segment reads in and processes the user's QUANTI-TIES DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: ARRYRD
PURPOSE: This segment reads in and processes the user's ARRAY DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: SKIRD
PURPOSE: This segment reads in and processes the user-input "I" and "K" cards of the user's SURFACE DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: SRFCRD
PURPOSE: This segment reads in the "S", "R", "D", "N", and "B" cards of the user's SURFACE DATA input block. These data are combined with the output of segment SKIRD and are output on file MRIOS for final processing in segment SDPSS2.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: SDPSS2
PURPOSE: This segment completes the processing of the user's SURFACE DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: BCSRD
PURPOSE: This segment reads in and processes the user's BCS DATAinput block. This segment also reads the NODE/BCSdirectory generated by segment SDPSS2 and processesit with the user's input data to form the communica-tion link between the BCS data and the SURFACE data.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: DCMNRD
PURPOSE: This segment reads in and writes out to the system output file the user's DOCUMENTATION DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: FRMFRD
PURPOSE: This segment reads in and processes the user's FORMFACTOR DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: SHDWRD
PURPOSE: This segment reads in and processes the user's SHADOW FACTOR DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: FLUXRD
PURPOSE: This segment reads in and processes the user's FLUX DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: CRSPRD
PURPOSE: This segment reads in and processes the user's CORRE- SPONDENCE DATA input block.
CALLING SEGMENT: DATARD
SEGMENTS CALLED: None
SEGMENT NAME: LOGIC0
PURPOSE: This segment is the driver segment for the segments that read in and process the user's OPERATIONS DATA block.
CALLING SEGMENT: TRASYS
SEGMENTS CALLED: LOGIC1LOGIC2LOGIC3
SEGMENT NAME: LOGICI
PURPOSE: This routine reads in the user's OPERATIONS DATA blockand sets up all the variables needed to write theODPROG segment of the processor.
CALLING SEGMENT: LOGICO
SEGMENTS CALLED: NoneII-6
SEGMENT NAME: LOGIC2
PURPOSE: This routine reads the output of segment LOGIC1 and writes to the processor compile file CMPL, the main processor segment, TRASYS, and the ODPROG subsegment.
CALLING SEGMENT: LOGICO
SEGMENTS CALLED: None
SEGMENT NAME: LOGIC3
PURPOSE: This segment reads in and processes the user's SUBROUTINE DATA block and writes to the processor compiler file CMPL all subsegments of the processor that require com- pilation.
CALLING SEGMENT: LOGICO
SEGMENTS CALLED: None
SEGMENT NAME: TPGEN
PURPOSE: This routine writes the needed driver information of the processor to the sequential data file SQNTL.
CALLING SEGMENT: TRASYS
SEGMENTS CALLED: None
SEGMENT NAME: RAPUP
PURPOSE: This segment wraps up the preprocessor execution phase.
CALLING SEGMENT: TRASYS
SEGMENTS CALLED: None
B. SUBROUTINE AND FUNCTION DESCRIPTIONS - PREPROCESSOR

## ROUTINE NAME: AAAAAA

```
DESCRIPTION: This routine initializes the variables containing the
    last program modifications number and date.
CALLING SEQUENCE: CALL AAAAAA (V, D)
    V - Last version modification number
    D - Date of last modification
```

REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
ROUTINE NAME: ABNORM1 (CDC system routine)
DESCRIPTION: This routine when called causes the program to termi-
nate abnormally with error traceback.
CALLING SEQUENCE: CALL ABNORM1 (P1, P2, P3)
P1 - The name of the calling subroutine; left- $-\cdots$
justified, Hollerith input
P2 - A decimal number, maximum of 88 , which is
used as an error number. Must not be 0
P3 - The error message; left-justified zero-
filled. The message must be terminated
with 4 octal zeros in the rightmost
position of a word
REFERENCED BY: SEGMENT ROUTINE
TRASYS ABTI
INITAL OPTNRD

ROUTINE NAME: ABT1
DESCRIPTION: This is an abnormal exit routine for the TRASYS preprocessor.

CALLING SEQUENCE: CALL ABT1 ( $\mathrm{N}, \mathrm{NO}$ )

$$
\begin{aligned}
& \text { N - } \begin{array}{l}
\text { Name of the routine exiting from. The } \\
\text { name is left-justified and the rest of the } \\
\\
\text { field blanked within the word } \\
\text { NO - Type of error } \\
=1 \text { User input error } \\
=2 \text { Bad source edit input tape } \\
=3 \text { TAPE/DISK/DRUM read error } \\
=4 \text { Program limitations exceeds } \\
=5 \text { Job field lenth too short } \\
=6 \text { Programmer error }
\end{array} .
\end{aligned}
$$

| REFERENCED $B Y:$ | SEGMENT | ROUTINE | SEGMENT | ROUTINE |  |  | SEGMENT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


ROUTINE NAME: ASKCRD
DESCRIPTION: This routine decodes the user input source edit con-trol cards for the preprocessor source editor.
CALIING SEQUENCE: CALL ASKCRD (IER)
IER - Error detection flag
$=0$ No error found
$=1$ One or more errors found
KEY VARIABLES: Card data passed to this routine is common/CARD/ variables NCDTYP and IND. Decoded information is returned in common/card/variable IND, NDOT, IDOT, JDOT.
REFERENCED BY: SEGMENT ROUTINE
SEDIT ..... SEDIT
FILES: NOUT - System output file

```
ROUTINE NAME: AUTOCM
DESCRIPTION: This routine sets up a correspondence data file on
    NGBIRR for the automatic combination of surfaces
    generated by a user-input polygon.
CALLING SEQUENCE: CALL AUTOCM
REFERENCED BY: SEGMENT ROUTINE
    SDPSS2 POLYGN
FILES: NGBIRR
```

ROUTINE NAME: BANNPP
DESCRIPTION: This routine prints the banner page for the TRASYS

```preprocessor on the output file.
```

CALLING SEQUENCE: CALL BANNPP
REFERENCED BY: SEGMENT ROUTINE

```INITAL INITAL
```

FILES: NOUT - System output file

ROUTINE NAME: BCSP1
DESCRIPTION: This routine processes the first pass on the userinput BCS input data block.

CALLING SEQUENCE: CALL BCSP1 (NIX)
NIX - Last cell used in dynamic storage, blank common variable (IX)

KEY VARIABLE: IX - Data once converted from user input are passed to the BCSP2 routine via this blank common variable

REFERENCED BY: SEGMENT ROUTINE
BCSRD BCSRD

FILES: NOUT - System output file

ROUTINE NAME: BCSP2

DESCRIPTION: This routine processes the block coordinate system input into data values and a BCS directory. Data are input to this routine in blank common generated by routine BCSP1. Data leave the routine via blank common.

CALLING SEQUENCE: CALL BCSP1 (NIX, NBSD, NBWD, NBSV, NBEV)
NIX - Length of vector data in blank common input to this routine
NBSV - Starting word of BCS data values in blank common (always 1)
NBEV - Length of BCS data values in blank common
NBSD - Starting word of BCS directory in blank common
NBWD - Length of BCS directory in blank common

REFERENCED BY: SEGMENT ROUTINE

BCSRD BCSRD
FILES: NOUT - System output file
ROUTINE NAME: BCSRD
DESCRIPTION: This routine and the routines that it calls readin and process the user-input BCS DATA block andtie the user-input surface data to the BCS inputdata. Besides the user BCS data input, this rou-tine reads a random $I / O$ record that was output bythe surface data block's pass 2 processor.
CALLING SEQUENCE: CALL BCSRD
KEY VARIABLES: NRIS - Random $I / 0$ record number of record written by surface data pass 2 processor
NLIS - Length of the random $I / O$ record
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD
FILES: NOUT - System output fileNRIO - Random I/O file
ROUTINE NAME: BLDR
DESCRIPTION: This routine drives the sort merge of the $B C D$ formfactors input in the form factor data block.
CALLING SEQUENCE: CALL BLDR (NUNIT, NODIN1, NODIN2, NDDOU, NN2,NN, NMAX)NUNIT - A local variable used by the sortmerge to designate the proper outputunit
NODIN1, NODIN2, NODOU - Three scratch arrays,
NN words long, allocated out of blank
common and used to store the working
data node $i$, node $j$, and value
NN2 - NN * 2
NN - Block size
NMAX - Maximum usable working storage area
REFERENCED BY: SEGMENT ROUTINE
ERMFRD FRMFRD
FILES: NSC3 - Sequential scratch file
NSC2 - Sequential scratch file
NSC1 - Sequential scratch file

## ROUTINE NAME: BOX

DESCRIPTION: This routine sets up the Euler angles, position vector, and program-compatible surface description parameters for the top of a five- or six-sided box input by the point method.

GALLING SEQUENCE: CALL BOX (P11, P12, P13, P31, P32, P33)
P11, P12, P13 - X, Y, and $Z$ components of a vector colinear with the surface coordinate system Y-axis

P31, P32, P33 - X, Y, and $Z$ components of a vector colinear with the surface coordinate system $X$-axis

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file

ROUTINE NAME: BOXGEN
DESCRIPTION: This routine generates Euler angles, position vector, and surface description parameters for the sides and bottom (BOX6) of a box based on similar parameters set up by BOX for the top of the box.

CALLING SEQUENCE: CALL BOXGEN (P11, P12, P13, P31, P32, P33, PHI, PSI, OMG, ISURF)

P11, P12, P13 - X, Y, and $Z$ components of a vector colinear with the surface coordinate system Y-axis

P31, P32, P33-X, Y, and $Z$ components of a vector colinear with the surface coordinate system $X$-axis

PHI, PSI, OMG - Euler angles necessary to rotate the ICS, BCS, or CCS into the surface coordinate system

ISURF - Counter indicating which side of box is being generated ( $1 \leq$ ISURF $\leq 6$ )

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

## ROUTINE NAME: BSRCHD

DESCRIPTION: This routine performs a table lookup for exact equal compares. The table must be a doublet array and the routine uses the binary search technique.

CALLING SEQUENCE: CALL ISRCHD (NAME, ITABLE, NPAINT, MIDPT, LAN)

```
NAME - Independent variable name searched for
    ITABLE - Doublet table (NAME/ANSWER)
    NPOINT - Number of words in the table (2 * number of
        entries)
    MIDPT - Binary midpoint of table (calculated in this
        routine of MIDPT = 0)
    IAN - Dependent variable found (ANSWER)
        =0 if no match is found
```

REFERENCED BY: SEGMENT ROUTINE

| INITAL | OPTNRD |
| :--- | :--- |
| SRFCRD | SRFCS1 |
|  | CDPRC3 |
| FRMFRD | READVF |
| SHDWRD | SFTBRD |
|  | SFRSI |
| FLUXRD | DIBLDR |

## ROUTINE NAME: CALAC

DESCRIPTION: This is a function subroutine that calculates surface and node areas.

CALLING SEQUENCE: CALAC (ILK, ALPH, BMIN, BMAX, GMIN, GMAX)
ILK - Surface type
$1=$ Rectangle
$2=$ Disc
3 = Trapezoid
4 = Cylinder
$5=$ Cone
$6=$ Sphere
7 = Paraboloid


REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

ROUTINE NAME: CALANG
DESCRIPTION: Given the direction cosines of SCS X and Y -axis in an ICS, BCS, or CCS, this routine calculates a set of Euler angles to rotate the ICS, BCS, or CCS into the SCS.

CALLING SEQUENCE: CALL CALANG (P11, P12, P13, P31, P32, P33, ROTZ, ROTY, ROTX)

P11, P12, P13-X, Y, and $Z$ components of a vector with magnitude BMAX that is colinear with the SCS Y-axis

P31, P32, P33 - X, Y, and $Z$ components of a vector with magnitude GMAX that is colinear with the SCS X-axis

ROTZ, ROTY, ROTX - Euler angles to rotate ICS, BCS, or CCS into the SCS

REFERENCED BY: SEGMENT ROUTINES

| SDPSS2 | BOX | PARAB |
| :--- | :--- | :--- |
|  | BOXGEN | TRAPZ |
|  | CONE | RECT |
|  | CYLINDER | SPHERE |
|  | DISC |  |
|  | IMAGES |  |

FILES: NOUT - System output file

ROUTINE NAME: CALB
DESCRIPTION: This routine calculates the BMIN and BMAX values for each node.

CALLING SEQUENCE: CALL CALB (DB, BETA, IB, BMAXT, NVB, IG)
DB - Measure of node width in the beta direction
BETA - Measure from the edge of the surface to the center of the current node in the beta direction
IB - Sequence number of current node in the beta direction
BMAXT - Temporary storage of BMAX value for surface
NVB - Number of nodes in the beta direction
IG - Sequence number of current row of nodes in the gamma direction

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file

ROUTINE NAME: CDPRC1
DESCRIPTION: This routine performs the first-pass conversion of a card data input that was read using an "A" format to Hollerith, integer, and floating-point words

CALLING SEQUENCE: CALL CDPRC1
KEY VARLABLES: IND - Array containing the card image data in Hollerith format
NDOT - Array containing the converted values
IDOT - Array describing what is contained in the NDOT array.
JDOT - Colum location in which the values in the NDOT array started on with respect to the IND array
ID - A single word containing the number of words used in the NDOT array

| REFERENCED BY: | SEGMENT |  | ROUTINE |  | SEGMENT |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | ROUTINE |  |  |
|  | TRASYS | HCARD | SHOWRD | SHOWRD |  |
|  | QUANRD | QUANRD |  |  | SFTBRD |
|  | ARRYRD | ARRYRD | FLUXRD | FLUXRD |  |
|  | SKIRD | SKIRD |  |  | DIBLOR |
|  |  | KP1 | CRSPRD | CRSPRD |  |
|  |  | IP1 | LOGIC1 | LP1 |  |
|  |  | SRFCRD | SRFCRD | ORBGEN |  |
|  |  | SRFCS1 | LOGIC2 | LOGIC2 |  |
|  |  | SRFCBC | LOGIC3 | LOGIC3 |  |
|  | BCSRD | BCSP1 |  |  |  |
|  | FRMFRD | FRMFRD |  |  |  |
|  |  | READVF |  |  |  |

FILES: NOUT - System output file

## ROUTINE NAME: CDPRC2

DESCRIPTION: This routine processes the arithmatic calculations (*, $1,-,+$ ) within a data field input on a user input card. This routine is usually called after subroutine CDPRCl, but in some instances it is called after CDPRC3.

GALLING SEQUENCE: CALL CDPRC2
KEY VARIABLES: NDOT, IDOT, JDOT and ID have the same function in this routine as they do in CDPRCl. This routine may or may not condense the arrays, depending on the type of input.

## REFERENCED BY: SEGMENT ROUTINE

TRASYS HCARD
QUANRD QUANRD
ARRYRD ARRYRD
SKIRD SKIRD
KP1
IP1
SRFCRD SRFCRD SRFCSI SRFCBC
BCSRD BCSF1
FRMFRD FRMFRD
READVF
SHOWRD SHOWRD
SFTBRD
FLUXRD FLUXRD
DIBLDR
CRSPRD CRSPRD
LOGIC1 - ORBGEN

FILES: NOUT - System output file
ROUTINE NAME: CDPRC3
DESCRIPTION: This routine compares all Hollerith words in the NDOT array to a directory array residing in the dynamic storage area for a matching name. If it finds one, then the name in the NDOT array is replaced by the corresponding data value or values. This routine should be called after CDPRC1 and before CDPRC2.
CALLING SEQUENCE: CALL CDPRG3
KEY VARIABLES: NDOT - Output array from CDPRCl and input for this routine. Also the output from this routine

    IDOT \& JDOT - Same as NDOT
    
    IX - Dynamic storage (blank common), containing the con-
    
        stant directory and constant data
    
    IXSD - Index pointing to first word of directory
    
    IXWD - Length of directory
    
    IXSV - Index pointing to first word of data values
    REFERENGED BY: SEGMENT ROUTINE

    SRFCRD SRFCS1
    FILES: NOUT - System output file
ROUTINE NAME: CHEC
DESCRIPTION: This routine checks the validity of surface description
parameter values.
GALLING SEQUENCE: CALL CHEC
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file
ROUTINE NAME: ..... CM30
DESCRIPTION: This routine name is an entry point into the routine WCOM.When this entry point name is called, the Fortran-labeledcommon for the processor FFPROG segment is written to theNCMPL file.
CALLING SEQUENCE: CALL CM30
REFERENCED BY: SEGMENT ..... ROUTINE
LOGICO WPROG
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: CM40
DESCRIPTION: This routine name is an entry point into the routine WCOM.When this entry point name is called, the Fortran-labeledcommon for the processor $\operatorname{SFPROG}$ segment is written to theNCMPL file.
CALLING SEQUENCE: CALL CM40
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 WPROG
LOGIC3 ..... LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

## ROUTINE NAME: CM50

DESCRIPTION: This routine name is an entry point into the routine WCOM. When this entry point is called, the Fortran-labeled common for the processor NPPROG segment is written to the NCMPL file.

CALLING SEQUENCE: CALL CM50

REFERENCED BY: SEGMENT ROUTINE
LOGICO SPROG

LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: CM60
DESCRIPTION: This routine name is an entry point into the routine WCOM. When this entry point name is called, the Fortran-labeled common for the processor ODPROG segment is written to the NCMPL file.

CALLING SEQUENCE: CALL CM60
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 WPROG
LOGIC3 LOGIC3

FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: CM70
DESCRIPTION: This routine name is an entry point into the routine WCOM. When the entry point is called, the Fortran-labeled common for the processor DIPROG segment is written to the NCMPL file.

CALLING SEQUENCE: CALL CM70
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
II-22
ROUTINE NAME: CM80
DESCRIPTION: This routine name is an entry point into the routineWCOM. When this entry point name is called, the Fortran-labeled common for the processor GBPROG segment is writtento the NCMPL file.
CALLING SEQUENCE: CALL CM80
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROGLOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: ..... CM90
DESCRIPTION: This routine name is an entry point into the routine $W C O M$.When this entry point name is called, the Fortran-labeledcommon for the processor RKPROG segment is written to theNCMPL file.
CALLING SEQUENCE: CALL CM90
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROGLOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards arewritten to
ROUTINE NAME: CM100
DESCRIPTION: This routine name is an entry point into the routine WCOM.When this entry point name is called, the Fortran-labeledcommon for the processor FFPRØG segment is written to theNCMPL $\ddagger i l e$.
CALLING SEQUENCE: CALL CM100
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG

LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

## ROUTINE NAME: CM110

DESCRIPTION: This routine name is an entry point into the routine WCOM.
When this entry point name is called, the Fortran-labeled
common for the processor QOPROG segment is written to the
NCMPL file.
CALLING SEQUENCE: CALL CM110
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG
LOGIC3 LOGIC3

FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: CM1. 20
DESCRIPTION: This routine name is an entry point into the routine WCOM When the entry point name is called, the Fortran-labeled common for the processor DRPROG segment is written to NCMPL file.

CALLING SEQUENCE: CALL CM120
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are

ROUTINE NAME: CM140
DESCRIPTION: The routine name is an entry point into the routine WCOM. When this entry point name is called, the Fortran-labeled common for the processor RCPROG segment is written to the NCMPL file.

CALLING SEQUENCE: CALL CM140
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: CM150
DESCRIPTION: This routine name is an entry point into the routine WCOM. When this entry point name is called, the Fortran-labeled common for the processor DRPROG segment is written to the NCMPL file.

CALLING SEQUENCE: CALL CM150
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPROG LOGIC3 LOGIC3

FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: CONE
DESCRIPTION: This routine converts point input for cones to programcompatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the cone.

CALLING SEQUENCE: CALL CONE
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

FILES: NOUT - System output file

ROUTINE NAME: COPYM
DESCRIPTION: This routine copies a specified model in source edit format from a user-specified file to the NEMG file.

CALLING SEQUENCE: CALL COPYM (NU, N)
NU - File to be copied from
N - Name of model to be copied

REFERENCED BY: SEGMENT ROUTINE
MCOLL MCOLL
FILES: NU - User-specified file
NEMG - Edit merge file
NOUT - System output file

ROUTINE NAME: CRSPRD
DESCRIPTION: This routine and the routines that it calls read in and process the user's CORRESPONDENCE DATA block.

CALLING SEQUENCE: CALL CRSPRD
REFERENCE: SEGMENT ROUTINE
DATARD DATARD
FILES: NGBIRR - Contains the correspondence data output from this routine for the processor phase
NOUT - System output file

## ROUTINE NAME: CYLNDR

DESCRIPTION: This routine converts point input for cylinders to pro-gram-compatible surface description parameters and sets Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the cylinder.

CALLING SEQUENCE: CALL CYLNDR
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

FILES: NOUT - System output file

ROUTINE NAME: DATARD
DESCRIPTION: This routine is the driving segment that calls the other segments that read in and process the data blocks of the user's input data deck. It does not read in the logic blocks.

CALLING SEQUENCE: CALL DATARD
REFERENCED BY: SEGMENT ROUTINE
TRASYS TRASYS
FILES: NOUT - System output £ile
ROUTINE NAME: DATE (CDC system routine)DESCRIPTION: This routine returns the current date that the job was runon the computer. The date is returned in displayed code inthe following format....
bMM/DD/YY.
CALLING SEQUENCE: CALI DATE (DTE)
DTE - Returned data variable
REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
ROUTINE NAME: DCMNRD
DESCRIPTION: This routine processes the user-input documentation data block.
CALLING SEQUENCE: CALL DCMNRD
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD
FILES: NOUT * System output file

ROUTINE NAME: DDUMP
DESCRIPTION: This routine prints consecutive core memory words to the system output file in octal format. This routine is used to dump the error trace information of the preprocessor.

CALLING SEQUENCE: CALL DDUMP (ISADD, IEADD, NN)
ISADD - Address of word to start dumping
IEADD - Address of word to end dumping
NN - Integer number to print to identify the printed dump

REFERENCED BY: SEGMENT ROUTINE SEGMENT ROUTINE SEGMENT ROUTINE
SEDIT SEDIT SKIRD SKIRD CRSPRD CRSPRD

|  | OTWTE |  | IP2 | LOGIC1 | LOGIC1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| GNEDO | GNEDO | SRFCRD | SRFCRD |  |  |
| QUANRD | QUANRD |  | SRFCS1. |  | LP1 |
|  |  | BCSRD | BCSRD | TPGEN | TPGEN |
|  | QUANSD |  |  |  |  |
| ARRYRD | ARRYRD | SHDWRD | SHDWRD |  |  |
|  |  |  | SFTBRD |  |  |
|  |  |  | SFRSI |  |  |
|  |  |  | SFWPL |  |  |
|  |  |  | SFCIO |  |  |

FILES: NOUT - System output file

ROUTINE NAME: DIBLDR
DESCRIPTION: This routine process one set of user's flux data input in the FLUX DATA input block. The output of this routine is the flux data restart file, NDIR.

CALLING SEQUENCE: CALL DIBLDR (NODIN, IQDS, IQDR, IQDP, NN, NN2, INIT, ISTEP)

NODIN - Starting location for the unsorted node array
IQDS - Starting location for the solar data
IQDR - Starting location for the albedo data
IQDP - Starting location for the planetary data
NN - Number of nodes in the node array
NN2 - Number of words in the node directory (2*NN)
INIT - Value to initialize the IQDS, IQDR, IQDP arrays to
ISTEP - Logic block step number to which this set of flux data pertains

REFERENCES: SEGMENT ROUTINE
FLUXRD FLUXRD

FILES: NOUT - System output file
NDIR - Flux data restart file

ROUTINE NAME: DIRCS
DESCRIPTION: Given the Euler angles necessary to rotate one coordinate system into another, this routine calculates the cooresponding direction cosines.

CALLING SEQUENCE: CALL DIRCS (II, JJ, KK, PHI, PSI, OMI, TRAN)
II, JJ, KK - Integers (1, 2, or 3) defining the order in which the rotations PHI, PSI, and OMI are to be performed
PHI, PSI, OMI - Euler angles defining the rotations about the $Z, Y$, and $X$-axes, respectively
TRAN - A three-by-three matrix of direction cosines

REFERENCES: SEGMENTS ROUTINES
SKIRD IPI
SDPSS2 SDTPS2
BOX
IMAGES

```
ROUTINE NAME: DISC
DESCRIPTION: This routine converts point input for discs to program-
compatible surface description parameters and sets up
Euler angles and a position vector to transform the ICS,
BCS, or CCS into the SCS of the disc.
CALLING SEQUENCE: CALL DISC
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file
ROUTINE NAME: DUPSRF
DESCRIPTION: This routine duplicates previously input surfaces and modifies surface description parameters as specified by the user.
CALLING SEQUENCE: CALI DUPSRF (ISSX, IESX, IER)
ISSX - The index of the starting location where previously input surface descriptions are loaded into blank common
IESX - The index of the location of the end of the surface description data in blank common for a previously input surface
IER - An indicator of errors encountered
REFERENCED BY: SEGMENT ROUTINE
SRFCRD SRFCSI
```

```
FILES: NOUT - System output file NRIOS - Scratch random access file
```

```
ROUTINE NAME: EPTAPE
DESCRIPTION: This routine positions the NEDI file at the beginning of the
        requested model so that source editing of the user's data
        can begin.
CALLING SEQUENCE: CALL EPTAPE (NU, NAME, IER)
            NEDI - Source edit input file
                        NAME - Name of model requested for editing
                        IER - Error return flag
                                =0 Ready for editing
                                \not=0 Not ready for editing
REFERENCED BY: SEGMENT ROUTINE
    SEDIT SEDIT
FILES: NOUT - System output file
        NEDIT - Source edit input file
ROUTINE NAME: FDPRC
DESCRIPTION: This routine does the **,*,/, +, - calculations between
    constants input within a single data field on a user-input
    data card.
CALLING SEQUENCE: CALL FDPRC (IPL, IPR, NWP)
                            IPL - Starting location within NDOT array to start
                        performing calculations
                            IPR - Ending location to stop processing calculations
                                NWP - Number of words left after calculation processing
        that contains data within the data fleld processed
REFERENCED BY: SEGMENT ROUTINE
        TRASYS CDPRC2
FILES: NOUT - System output file
```

ROUTINE NAME: FINAL
DESCRIPTION: This routine generates the form factor request matrix on the FFR restart form factor file for use in the processor segment. The entire matrix is defined as a "-1" or the data input by the user. A " -1 " means recompute the form factor.

CALLING SEQUENCE: CALL FINAL (NUNIT, NODE, NODOU, DATA, RINIT, ISTEP, NN, NN2)

NUNIT - Unit containing sorted - blocked form factor data
NODE - Input array of node numbers
NODOU, DATA - Working arrays defined in blank common
RINIT - User-input initial value for the matrix
ISTEP - User-input step number as to where to store the restart data
NN - Number of nodes
NN2 -2 * NN
REFERENCED BY: SEGMENT ROUTINE
FRMFRD FRMFRD
RILES: NFFR - Form factor restart file

ROUTINE NAME: FLUXRD
DESCRIPTION: This routine and the routines that it calls read in and process the user's input FLUX DATA block.

CALLING SEQUENCE: CALL FLUXRD
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD
FILES: NOUT - System output file

ROUTINE NAME: FRMFRD
DESCRIPTIONS: This routine and the routines that it calls read in and process the user's FORM FACTOR DATA block.

CALL SEQUENCE: CALL FRMFRD
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD
FILES: NOUT - System output file NSC2 - TRASYS scratch file

II-32
ROUTINE NAME: GNEDO
DESCRIPTION: This routine generates the source edit output file if the user requests one to be generated
CALLING SEQUENCE: CALL GNEDO
REFERENCED BY: SEGMENT ROUTINE
START ..... START
FILES: NOUT - System output ..... file
NEDI - Input source edit file
NEDO - Output source edit file
NDI - Current model source data file
ROUTINE NAME: HCARD
DESCRIPTION: This routine decodes the header cards of the user's inputdata deck when the card is read from the NDI file.
CALLING SEQUENCE: CALL HCARD (N)
$N=1$ Card to be processed has been read prior tocalling this routine
$\mathrm{N}=0$ Card is to be read before processing
REFERENCED BY: SEGMENT ROUTINE

|  |  |
| :--- | :--- |
| START | HEADCD |
| INITAL | OPTNRD |
| SEDIT | SEDIT |
| DATARD | DATARD |
| QUANRD | QUANRD |
| ARRYRD | ARRYRD |
| SKIRD | SKIRD |
| SRFCRD | SRFCRD |
|  | SRFCS1 |
|  | SRFCBC |
| BCSRD | BCSRD |
| DCMNRD | DCMNRD |
| FRMFRD | FRMFRD |
|  | READVF |
| SHOWRD | SHOWRD |
|  | SFTBRD |
| FLUXRD | FLUXRD |
|  | DIBLDR |
| CRSPRD | CRSPRD |
| LOGIC1 | LP1 |
| LOGIC3 | LOGIC3 |

FILES: NOUT - System output file
ROUTINE NAME: HEADCD
DESCRIPTION: This routine decodes the HEADER cards of the user input data deck when the card is to be read directly from the system input file.
CALLING SEQUENCE: CALL HEADCD (N)
$\mathrm{N}=1$ Card to be processed has been read prior tocalling this routine
$N=0$ Card is to be read before processing
REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
MCOLL ..... MCOLL
FILES: NIN - System input file NOUT - System output file
ROUTINE NAME: ..... HTI
DESCRIPTION: This routine converts a Hollerith word containing a positiveinteger number to an integer number.
CALLING SEQUENCE: CALL HTI (IN, IOUT, IFLAG)
IN - Word to be converted
IOUT - Converted word
IFLAG - = 0 Conversion was complete
$=1$ Conversion was not complete
REFERENCED BY: SEGMENT ..... ROUTINE
INITAL OPTNRD
ROUTINE NAME: H10T6
DESCRIPTION: This routine converts a string of 10 character Hollerithwords to a string of 6 character Hollerith words.
CALLING SEQUENCE: CALL H1OT6 (NID, ICめM, NW)
NID - starting location in the IX array (dynamicstorage) to start processing
ICØM - Starting location to store processed data
NW - Number of 10-character words to process
REFERENCED BY: SEGMENT ..... ROUTINE
INITAL OPINRDII-34

## ROUTINE NAME: IMAGES

DESCRIPTION: This routine images previously input surfaces in reference planes that have been set up by subroutine REFCD and writes the surface description data for the images on the random access file.

CALLING SEQUENCE: CALL IMAGES (ISAVE, NOSF, NOND, IMAG, IREF, NLEN, INDEXS, INDEXN, IER)

ISAVE - An array of previously input surface numbers and their corresponding random access file record numbers
NOSF - Surface counter (sequence number)
NOND - Node counter (sequence number)
IMAG - ID number of previously input surface that is to be imaged
IREF - ID number of reference plane in which IMAG is to be imaged
NLEN - Length of a random access record
INDEXS - An array of random access record numbers for surfaces
INDEXN - An array of random access record numbers for surfaces
IER - An indicator of errors encountered

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

FILES: NOUT - System output file
NRIO - Random access file

ROUTINE NAME: INITAL
DESCRIPTION: This routine initializes the preprocessor-labeled common, and calls the routines to write the TRASYS banner on the system output file and read in the OPTION DATA block.

CALLING SEQUENCE: CALL INITAL
REFERENCED BY: SEGMENT ROUTINE
START START

## ROUTINE NAME: INRDB

DESCRIPTION: This subroutine name is an entry point into routine INRDD.
CALLING SEQUENCE: CALL INRDB
REFERENCED BY: SEGMENT ROUTINE
BCSRD BCSRD
BCSP1

ROUTINE NAME: INRDD
DESCRIPTION: This routine reads in the NDI file that contains the userinput data cards.

CALLING SEQUENCE: CALL INRDD
CALL INRDB
CALL INRDO
CALL INRDDC $\}$ Entry Points
CALL INRDSF
CALL INRDOD

| REFERENCED BY: | SEGMENT | ROUTINE | SEGMENT | ROUTINE |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
|  | TRASYS | HCARD | SRFCRD | SRFCRD |  |
|  | QUANRD | QUANRD |  | SRFCSI |  |
|  | ARRYRD | ARRAYRD |  | SRFCBC |  |
|  | SKIRD | SKIRD | CBSPRD | CRSPRD |  |
|  |  | KP1 |  |  |  |
|  |  | IP1 |  |  |  |

FILES: NOUT - System output file
NDI - Current model source data file

ROUTINE NAME: INRDE
DESCRIPTION: This routine reads in the NEDI file for the TRASYS source editor.
calling sequence: Call inrde
REFERENCED BY: SEGMENT ROUTINE
SEDIT SEDIT
FILES: NEDI - Input source edit data file
NOUT - System output file
ROUTINE NAME: INRDO
DESCRIPTION: This subroutine name is an entry point into routine INRDD.
CALL SEQUENCE: CALL INRDO
REFERENCED BY: SEGMENT ROUTINEFRMFRD FRMFRDREADVF
FLUXRD FLUXRD
DIBLDR
LOGIC3 LOGIC3
ROUTINE NAME: INRDOD
DESCRIPTION: This subroutine name is an entry point into routine INRDD.
CALLING SEQUENCE: CALL INRDOD
REFERENCED BY: SEGMENT ROUTINE
LOGIC1 LP1
ROUTINE NAME: INRDPP
DESCRIPTION: This routine reads in the NDI file for the source editorprint/punch routine.
CALLING SEQUENCE: CALL INRDPP
REFERENCED BY: SEGMENT ROUTINE
SEDIT PTPHSF
FILES: NDI - Input source edit data file
ROUTINE NAME: INRDSF
DESCRIPTION: This subroutine name is an entry point into the subroutine INRDD.
GALLING SEQUENCE: CALL INRDSF
REFERENCED BY: SEGMENT ..... ROUTINE
SHDWRD ..... SHDWRDSFTBRD

```
ROUTINE NAME: IP1
DESCRIPTION: This routine performs the first-pass processing of the
intermediate coordinate system input cards that the user
input in the SURFACE DATA block.
CALLING SEQUENCE: CALL IP1 (NIX)
NIX - Index of the last word used in the dynamic
                                    storage array (IX) on completion of this
                                    routine.
REFERENCED BY: SEGMENT ROUTINE
                    SKIRD SKIRD
FILES: NOUT - System output file
ROUTINE NAME: IP2
DESCRIPTION: This routine performs the second-pass processing of the inter-
                                    mediate coordinate system input data that the user input
                                    in the SURFACE DATA block.
CALLING SEQUENCE: CALL IP2 (NIX)
                    NIX - Index of the last word in dynamic storage con-
                    taining the data generated and passed by IP1.
KEY VARIABLES: NISV - Index of the starting word in dynamic storage that
                                    contains the output intermediate coordinate data
    NIEV - Index of the last word in dynamic storage that
                        contains the output intermediate coordinate data
                            NISD - Index of the starting word in dynamic storage that
                        contains the output intermediate coordinate directory
                            NIWD - Length of the intermediate coordinate directory
REFERENCES: SEGMENT ROUTINE
    SKIRD SKIRD
FILES: NOUT - System output file
```

ROUTINE NAME: JOBNO (CDC system routine)
DESCRIPTION: This routine returns the current job number of the job as the computer knows it. The job number is returned in dis- play code in the following format:
UUUUUCCbbwhere UUUUU are user-assigned and cc are computer-assigned.
CALLING SEQUENCE' CALL JOBNO (N)
$\mathrm{N}=$ Returned variable for job number
REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
ROUTINE NAME: KP1
DESCRIPTION: This routine performs the first-pass processing of theconstant input cards the user inputs in the SURFACE DATAblocks.
CALLING SEQUENCE: CALL KP1 (NKREC, NKNAM, NKVAL, IBUF)
NKREC - Number of records written to the NSC1 file NKVAL - Total number of constant values, including the integer count
NKNAM - The number of constant names
IBUF - Scratch array that may or may not be used as a communication disk between routine $K P 1$ and KP2
ENTRY POINT: CALL KP1E (NKREC, IBUF)This entry point is called when all constant cards have beenread and the IBUF array is to be flushed to file NSCl.
REFERENCED BY: SEGMENT ROUTINE
SKIRD ..... SKIRD
FILES: NOUT - System output file NSC1 - Scratch file 1 used to communicate between routines KPI and KP2

ROUTINE NAME: KP1E
DESCRIPTION: This name is an entry point into routine KPl and is called to flush the IBUF array when the last constant data card has been processed.

CALLING SEQUENCE: CALL KPIE (NKREC, IBUF)
NKREC - Number of records written to the NSC1 file IBUF - Scratch array that may or may not be used as a communication link between routines KP1 and KP2


ROUTINE NAME: KP2
DESCRIPTION: This routine performs the second-pass processing of the constant input cards the user inputs in the SURFACE DATA blocks.

CALLING SEQUENCE: CALL KP2 (NKREC, NKNAM, NKUAL, IBUF)
Argument description is same as for routine KP1.
KEY VARIABLES: NKSD - Index of the starting word in dynamic storage that contains the output constant data
NKWD - Length of the constants directory
KKSV - Index of the starting word in dynamic storage that contains the output constant values
NKEV - Index of the last word in dynamic storage that contains the output constant values

REFERENCED BY: SEGMENT ROUTINE
SKIRD SKIRD

FILES: NOUT - System output file
NSC1 - Scratch file 1 used to communicate between routines KP1 and KP2

ROUTINE NAME: LFILL
DESCRIPTION: This routine left-justifies a word that is filled with zeros to the left of the data.

CALLING SEQUENCE: $\mathrm{I}=\mathrm{LFILL}$ (IN, IFILL)
IN - Word to be left-justified
IFILL - The character to fill the word with right of the data

| REFERENCED BY: | SEGMENT | ROUTINE | SEGMENT | ROUTINE |
| :---: | :---: | :---: | :---: | :---: |
|  | TRASYS | ABTl | QUANRD | QUANRD |
|  |  | CDPRCl | ARRYRD | ARRYRD |
|  |  | PTSVER | SKIRD | SKIRD |
|  | INITAL | OPINRD |  | IP1 |
|  |  |  | SRFCRD | SRFCS1 |
|  |  |  |  | CDPRC3 |
|  |  |  | BCSRD | BCSRD |
|  |  | H10T6 | $\because$ | BCSP1 |
|  |  | UNITCG | SHDWRD | SHDWRD |
|  | MCOLL | MCOLL | LOGIC1 | LOGICl |
|  | SEDIT | SEDIT |  |  |

ROUTINE NAME: LLSF (CDC system routine)
DESCRIPTION: This routine is a function that left-shifts a word with rap-a-round on the pushoff bits. It is usually a system routine.

CALLING SEQUENCE: I = LLSF (IWORD, IBITS)
IWORD - Word to be left-shifted
IBITS - Number of bits to shift
REFERENCED BY:

| SEGMENT | ROUTINE | SEGMENT | ROUTINE | SEGMENT | ROUTINE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TRASYS | HCARD | SEDIT | SEDIT | BCSRD | BCSRD |
|  | INRDD |  |  |  | BCSP1 |
|  | CDPRCl |  |  |  | BCSP2 |
|  | LFILL |  | ASKCRD | DCMNRD | DCMNRD |
|  | PTSVER |  | PTPHSF | FRMFRD | FRMFRD |
|  | BSRCHD | QUANRD | QUANRD |  | READVF |
| START | HEADCD | ARRYRD | ARRYRD | SHDWRD | SHDWRD |
| INITAL | OPTNRD | SKIRD | SKIRD | FLUXRD | FLUXRD |
|  | HTI | SRFCRD | KP1 | FLUXRD | DIBLDR |
|  | H10T6 OPTNCV |  | SRFCS 1 | CRSPRD | CRSPRD |
|  | OPTNCV |  | CDPRC3 | LOGICl | LP1 |
| MCOLL | MCOLL MCOLCV | SDPSS2 | SDTPS2 | LOGIC2 | LOGIC2 |
|  |  |  | IMAGES | LOGIC3 | LOGIC3 |

```
ROUTINE NAME: LOCF (CDC system routine)
DESCRIPTION: This routine is a function that returns the absolute
memory word address of the argument passed to it.
The routine is usually a Fortran-callable system routine.
GALLING SEQUENCE: I = LOCF (J)
J = The word whose address is wanted
REFERENCED BY: SEGMENT ROUTINE
TRASYS WSCOPE
                                    DDUMP
                                    BUFCOR
START ALTFILE
INITAL INITAL
SKIRD IP2
                                KP2
    SDPSS2 SDPSS2
    BCSRD BCSP2
    RAPUP RAPUP
```

ROUTINE NAME: LOGICO
DESCRIPTLON: This routine is the controlling driver for the processing of the user's logic block input

CALLING SEQUENCE: CALL LOGICO
REFERENCED BY: SEGMENT ROUTINE
TRASYS TRASYS

FLLES: NOUT - System output file
ROUTINE NAME: LOGIC1
DESCRIPTION: This routine and the routines that it calls read in the array, quantities, and BCS directories. It then checks for duplicate names between the directories and reserve variable list and creates the common array consisting of names that will be used to write the processor common arrays. This routine also reads in the user's OPERATION DATA block and counts the step cards and the substep cards within a step. This information will be used to create the computed GO TO statements in routine LOGIC2.
CALLING SEQUENCE: CALL LOGIC1
REFERENCED BY: SEGMENT ROUTINE
LOGICO LOGICO
FILES: NOUT - System output file
NRIO - Preprocessor and processor random I/O commnication file
ROUTINE NAME: LOGIC2
DESCRIPTION: This routine generates the main program segment of the pro- cessor and also reads in the OPERATION DATA output from routine LP1 and processes it into valid Fortran routine. These routines are written to file NCMPL as valid Fortran routines.
CALLING SEQUENCE: CALL LOGIC2
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 ..... LOGICO
FILES: NOUT - System output fileNSCl - Scratch file containing user's operation data output byroutine LP1
NCMPL - The file that the generated processor Fortran card arewritten to

## ROUTINE NAME: LOGIC3

DESCRIPTION: This routine and the routines that it calls read in and process the user's SUBROUTINE DATA block. This routine also writes all of the primary routines of all the segments, along with the user-input subroutines to the NCMPL file.

CALLING SEQUENCE: CALL LOGIC3
REFERENCED BY: SEGMENT ROUTINE
LOGICO LOGICO

FILES: NOUT - System output file
NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: LP1
DESGRIPTION: This routine reads the user's OPERATION DATA block in pass 1 for the number of steps and number of substeps within a step. The ORBGEN user-input card is also expanded in this routine to standard type of input. The step directory is written to file NRIO.

CALLING SEQUENCE: CALL LPI
REFERENCED BY: SEGMENT ROUTINE
LOGICI LOGICI

FILES: NOUT - System output file
NSC1 - Scratch file which the operation data block cards are written to for pass 2 processing
NRIO - Preprocessor and processor random I/O communication file
ROUTINE NAME: ..... LRSF
DESCRIPTION: This routine is a function that right-shifts a word with sign extension. This routine is usually a system function.
CALLIṄG SEQUENCE: I = LRSF (IWORD, IBITS)
IWORD $=$ Word to be right-shifted
IBITS = Number of bits to shift
REFERENCED BY: SEGMENT ..... ROUTINE
TRASYS ..... ABT1
BSRCHDINITAL OPTNRDQUANRD QUANRDARRYRD ARRYRD
SKIRD ..... KPl
SRFCRD ..... SRFCS 1
BCSRD BCSRD
FRMERD FINALSORTDB
SHDWRD SFUNPKSFTBRD
FLUXRD DIBLDR

```
ROUTINE NAME: MERGC
DESCRIPTION: This routine processes the CMERG source editor directives.
                                    Once the CMERGE card is decoded, the NCMG file is searched
                                    to find the requested file and cards, and the requested
                                    cards are then written to the NDI file.
CALLING SEQUENCE: CALL MERGC (NCARD)
                    NCARD = Last new edit sequence number used
REFERENCED BY: SEGMENT ROUTINE
    SEDIT SEDIT
FILES: NOUT - System output file
    NCMG - User-input card image supplementary input file
ROUTINE NAME: MERGE
DESCRIPTION: This routine processes the EMERG source editor directives.
                Once the EMERG card is decoded, the NEMG file is searched
                        for the requested model and cards, and the requested cards
                            are then written to the NDI file.
CALLING SEQUENCE: CALL MERGE (NCARD)
    NCARD = Last new edit sequence number used
REFERENCED BY: SEGMENT ROUTINE
    SEDIT SEDIT
FILES: NOUT - System output file
        NEMG - User-input source edit-formatted supplementary input file
```

```
ROUTINE NAME: MERGF
DESCRIPTION: This routine merges the data on two files and generates a
third file containing the entire set of data in a sorted
format.
CALLING SEQUENCE: CALL MERGF (M1, M2, MOUT, IA, IB, IC, IOUTT)
    M1 - Input unit number
    M2 - Input unit number
    MOUT - Output unit number
    IA, IB, IC, IOUTT - Working arrays
REFERENCED BY: SEGMENT ROUTINE
    FRMFRD BLDR
FILES: NOUT - System output file
    NSC1 - Scratch file tape 1, set up in routine BLDR
    NSC2 - Scratch file tape 2, set up in routine BLDR
    NSC3 - Scratch file tape 3, set up in routine BLDR
ROUTINE NAME: NONDF
DESCRIPTION: This routine, when given the internal sequence number of the node, returns the node number.
CALLING SEQUENCE: \(I=\) NONDF (NN)
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
IMAGES
AUTOCM
STUFDT
```

ROUTINE NAME: OPENMS (CDC system routine)
DESCRIPTION: This routine opens a mass storage random I/O file.
CALLING SEQUENCE: CALL OPENMS (U, IX, LNGTH, T)
U - Unit designatorIX - First word address in central memory ofthe array that will contain the file indexLNGTH - Length of the indexLNGTH - (no. of records +1) for number index.LNGTH - 2 * (no. of records +1) for nameindex
T $\quad$ T $=0$ file is referenced through a number master index $\mathrm{T}=1$ file is referenced through a name master index (TRASYS uses only a numbered index)
REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
SRFCRD SRFCRD
SHDWRD SHDWRD
ROUTINE NAME: OPTNCV
DESCRIPTION: This routine decodes the user's input cards that are inputin the OPTION DATA block.
CALLING SEQUENCE: CALL OPTNCV
REFERENCED BY: SEGMENT ROUTINE
INITAL OPTNRD
ROUTINE NAME: OPTNRD
DESCRIPTION: This routine reads in and processes the user-input OPTION DATA block.
CALLING SEQUENCE: CALL OPTNRD
REFERENCED BY: SEGMENT ROUTINE
INITAL INITAL
FILES: NOUT - System output file
NIN - System input file
ROUTINE NAME: ORBGEN
DESCRIPTION: This routine and the routines that it calls process the user's logic input ORBGEN card.
REFERENCED BY: SEGMENT ROUTINE
LOGIC1 ..... LP1
FILES: NOUT - System output file
NSC1 - Scratch file that the output of logic pass 1 is written to

```
DESCRIPTION: This routine writes the operations data block code for automatic generation of inertial (sun or star) oriented orbits.
CALLING SEQUENCE: CALL ORBIN (IREP, TRU, DVC, NPOINT, ILORC)
IREP - Repeat flag for complete orbits
TRU - Initial true anomaly
DV6 - True anomaly increment
NPOINT - Number of orbit points generated
ILORC - Flag to eliminate AQCAL calls from operations data block code
REFERENCED BY: SEGMENT ROUTINE
LOGICI ORBGEN
FILES: NOUT - System output file NSC1 - Scratch file that the output of logic pass 1 is written to
```

ROUTINE NAME: ORBNPL
DESCRIPTION: This routine writes the operations data block code for anito matic generation of heliocentric orbits.

CALLING SEQUENCE: CALL ORBNPL (IREP, TRU, DVL, NPOINT, ILORC)
IREP - Repeat flag for complete orbits
TRU - Initial true anomaly
DV6 - True anomaly increment
NPOINT - Number of orbit points generated
ILORC - Flag to eliminate AQCAL calls from operations data block code

REFERENCED BY: SEGMENT ROUTINE
LOGIC1 ORBGEN

```
FILES: NOUT - System output file
    NSCl - Scratch file that the output of logic pass l is written to
```

ROUTINE NAME: ORBPL

```
DESGRIPTION: This routine writes the operations data block code for
    automatic generation of noncircular, planet-oriented orbits.
CALLING SEQUENCE: CALL ORBPL (IREP, TRU, DV6, NPOINT, ILORC)
    IREP
    TRU
    DV6 Reference ORBIN
    NPOINT
    ILORC
REFERENCED BY: SEGMENT ROUTINE
    LOGIC1 ORBGEN
FILES: NOUT - System output file
    NSCl - Scratch file that the output of logic pass 1 is
    written to
```

ROUTINE NAME: ORBPLC
DESCRIPTION: This routine writes the operations data block code for automatic generation of circular, planet-oriented orbits.

CALLING SEQUENCE: CALL ORPLC (IREP, TRU, DV6, NPOINT, ILORC)


REFERENCED BY: SEGMENT ROUTINE
LOGIC1 ORBGEN
$\begin{array}{ll}\text { FILES: } & \text { NOUT - System output file } \\ & \text { NSCl - Scratch file that the output of logic pass } 1 \text { is written to }\end{array}$
ROUTLNE NAME: OTWTE
DESCRIPTION: This routine writes the NDI file called by the TRASYS source editor.
CALLING SEQUENCE: CALL OTWTE (IFLUSH)
IFLUSH $=0$ Not the last call to this routine
IFLUSH $=1$ The last call to this routine. Flush the IOB array to the NDI file
KEY VARIABLES: IOB - An array used for collecting card images until IOT words have been filled
IOT - Last word to fill in the IOB array before flushing the data to the NDI file

REFERENCED BY: SEGMENT | ROUTINE |
| :---: |
| SEDIT |
| SEDIT |
| MERGE |
| MERGC |

| MLES: NDI - Source edit-formatted output file used as input file for |
| :--- |
|  |
| data and logic preprocessor segments |

ROUTINE NAME: PAGEH
DESCRIPTION: This routine ejects the page and writes the page heading on all pages generated by the preprocessor.

CALLING SEQUENCE: CALL PAGEH (N)
$N=0$ Do not write card column designator line
$N=1$ Write card column designator line
REFERENCED BY: SEGMENT ROUTINE SEGMENT ROUTINE

| TRASYS | INRDD | SRFCRD | SRFCS1 |
| :--- | :--- | :--- | :--- |
|  | SERROR |  | SRFCBC |
| START | HEADCD | BCSRD | BCSRD |
| INITAL | OPTNRD | DCMNRD | DCMNRD |
| MCOLL | MCOLL | FRMFRD | FRMFRD |
| SEDIT | SEDIT | SHDWRD | SHDWRD |
|  |  | FLUXRD | FLUXRD |
|  |  | CRSPRD | CRSPRD |
|  |  | PTPHSF | LOGIC1 |
|  | LOGIC1 |  |  |
|  | MERGC | LOGIC2 | LOGIC2 |
| GNEDO | PTHSTY | LOGIC3 | LOGIC3 |
| DATARD | DATARD | RAPUP | RAPUP |
| QUANRD | QUANRD |  |  |
| ARRYRD | ARRYRD |  |  |
| SKIRD | SKIRD |  |  |
|  | PTCKS1 |  |  |

FILES: NOUT - System output file

II-52

## ROUTINE NAME: PARAB

DESCRIPTION: This routine converts point input for paraboloids to programcompatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the paraboloid.
CALLING SEQUENCE: CALL PARAB
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file

ROUTINE NAME: PDUMP (CDC system routine)
DESCRIPTION: This routine dumps the main memory on the system output file.

CALLING SEQUENCE: CALL PDUMP (A, B, C)
A - Starting location to start dumping
B - Last word to be dumped
C - Mode in which to dump the words
$0=$ Octal dump
1 = Real dump
2 = Integer dump
3 = Octal dump
4 = Octal dump

REFERENCED BY: SEGMENT ROUTINE

SDPSS2 SDTPS2

IMAGES
FRMFRD FRMFRD
BLDR
FINAL
MERGF

FLUXRD FLUXRD
DIBLOR

FILES: NOUT - System output file
ROUTINE NAME: POLYGN
DESCRIPTION: This routine generates N - 2 triangles from point input, where N is the number of points, and sets up Euler angles and a posi- tion vector for each triangle generated.
CALLING SEQUENCE: CALL POLYGN (ISURF)ISURF - A counter, from 1 to $\mathrm{N}-2$, indicating whichtriangle is being generated
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 ..... SDTPS2
FILES: NOUT - System output ..... file
ROUTINE NAME: POSIT
DESCRIPTION: This routine transposes a vector in the ICS, BCS, or CCS into the SCS of a reference plane (for imaging purposes), negates the $Z$ component, and transforms it back into the ICS, BCS, or CCS.
CALLING SEQUENCE: CALL POSIT (X, Y, Z, TRAN)$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Vector components in the ICS, BCS, or CCSTRAN - A $3 \times 3$ matrix of direction cosines totransform a vector from the ICS, BCS, orCCS to the SCS
REFERENCED BY: SEGMENT ..... ROUTINE
SDPSS2 IMAGES
ROUTINE NAME: PPTIM (CDC system routine)
DESCRIPTION: This routine will return the accumulated peripheral processor time, in integer seconds, incurred up to the time of the call.
CALLING SEQUENCE: CALL PPTIM (N)
$\mathrm{N}=$ Return integer preprocessor time
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
SDPSS2 IMAGESTRASYS TRASYSSTART STARTDATARD DATARDLOGIC0 LOGIC0TPGEN TPGENRAPUP RAPUP
ROUTINE NAME: PRNTCK
DESCRIPTION: This routine outputs the traced node/surface data if the variable ITRC25 is set in the OPTIONS DATA block.
CALLING SEQUENCE: CALL PRNTCK (ITP)
ITP - Flag defining node dump or surface dump
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
IMAGES
FILES: NOUT - System output file
DESCRIPTION: This routine, given an array of points, checks for duplicates, and returns ICHEK as a flag.
CALLING SEQUENCE: CALL PTCHEK (N, IT, JT, X, LCHEK)
$\mathrm{N} \quad$ - Number of points to be checked
IT - Skip this point
JT - Skip this point
X - Array of point data
ICHEK - $0=$ Points not same
1 = Points same
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 BOXPOLYGNTRAPZRECT
ROUTINE NAME: PTCKS1
DESCRIPTION: This routine writes out the surface ICS directory, ICS values, constant-directory and the constant values. This routine is only executed when the surface data pass 1 error trace flag is turned on in the OPTIONS DATA block.
CALLING SEQUENCE: CALL PTCKS1
REFERENCED BY: SEGMENT ROUTINE
SKIRD SKIRD
FILES: NOUT - System output file
ROUTINE NAME: PTDIR
DESCRIPTION: This routine writes the directory record of a sourceedit-formatted tape to the system output file.
CALLING SEQUENCE: CALL PTDIR (NU, IDIR)NU - File that contained the director to beprinted
IDIR - The array containing the director to beprinted
FILES: NOUT - System output ..... file
ROUTINE NAME: PTHSTY
DESCRIPTION: This routine writes the history record of a sourceedit-formatted tape to the system output file.
CALLING SEQUENCE: CALL PTHSTY (IHS, ITTPFT)
IHS - The array that contains the historyrecord to be printed
ITTPFT - Approximate tape footage used by model being printed
REFERENCED BY: SEGMENT ROUTINE
GNEDO ..... GNEDO
FILES: NOUT - System output file
ROUTINE NAME: PTPHSF
DESCRIPTION: This routine prints and/or punches the NDI source edit-formatted file.
CALLING SEQUENCES: CALL PTPHSF (ISEQ)
$I S E Q=0 \quad$ No sequencing in Columns 73-80 is wantedon the punched outputISEQ $\neq 0 \quad$ Sequencing in Column $73-80$ is wanted onthe punched output
REFERENCED BY: SEGMENT ROUTINE
SEDIT SEDIT
FILES: NOUT - System output file
ROUTINE NAME: PTSVER
DESCRIPTION: This routine writes the character mark under the bad character or field when an error is encountered. This routine also saves the bad card edit sequence line number so that it can be printed at the end of the preprocessor execution.
CALLING SEQUENCE: PTSVER (IC, IER)
IC - Column to print error character mark $I C=1$ is actual character 7 on the input card.

IER - = 0 Fatal error was encountered. $\neq 0$ Caution error was encountered.
REFERENCED BY: SEGMENT ROUTINE
TRASYS SERROR
FILES: NOUT - System output file

DESCRIPTION: This routine processes the user-input QUANTITIES DATA block.

CALLING SEQUENCE: CALL QUANRD

```
REFERENCED BY: SEGMENT ROUTINE
    DATARD DATARD
FILES: NOUT - System output file
        NSC1 - Scratch file used to write theuser quantity values.
        This file is written is pass 1 and read in pass 2
    NRIO - Preprocessor and processor random I/O communication
        file
```

ROUTINE NAME: QUANSD
DESCRIPTION: This routine writes to the NRIO file the control quantities directory and values when the user does not input a QUANTITIES DATA block.

CALLING SEQUENCE: CALL QUANSD
REFERENCED BY: SEGMENT ROUTINE
QUANRD QUANRD
FILES: NOUT - System output file
NRIO - Preprocessor and processor random $I / O$ communication file

ROUTINE NAME: RAPUP
DESCRIPTION: This routine writes the time and core statistics at the end of the preprocessor output. This routine also terminates the preprocessor either normally or in the case of fatal errors, abnormally.

CALLING SEQUENCE: CALL RAPUP
REFERENCED BY: SEGMENT ROUTINE
I'RASYS TRASYS
FILES: NOUT - System output file

ROUTINE NAME: RDPSN

```
DESCRIPTION: This routine, given the dimension of a surface or node,
                                    defines the position vector to the center of the node and
                                    the radius of the sphere large enough to enclose it.
CALLING SEQUENCE: CALL RDPSN (VEC, BETA, GAMMA, DB, DG)
                            VEC(3) - Array containing (X, Y, Z) position to center
                    BETA, GAMMA - Length along side of node
                    DB, DG - Distance to center of node/surface
                    REFERENCED BY: SEGMENT ROUTINE
                    SDPSS2 SDTPS2
```


## ROUTINE NAME: RDPSS

DESCRIPTION: This routine computes the radius and corresponding position vector used to encompass the surface and locate the center.

CALLING SEQUENCE: CALL RDPSS (VEC)
VEC - Array of position vectors

## REFERENCED BY: SEGMENT ROUTINE

SDPSS2 SDTPS2

## ROUTINE NAME: READMS

DESCRIPTION: This routine reads a logical record from a random I/O mass storage file.

CALLING SEQUENCE: CALL READMS (U, FWA, N, K)

U - Unit designator.
FWA - Address in central memory of first word of record
N - Number of central memory words in the record to be transferred
$K$ - Number index of record or name index of record to be read. (In TRASYS, $K=1$ always)

REFERENCED BY: SEGMENT ROUTINE

| SRFCRD | DUPSRF |
| :--- | :--- |
| SDPSS2 | IMAGES |
| BCSRD | BCSRD |
| SHDWRD | SFWPL |
| LGOIC1 | LOGIC1 |

## ROUTINE NAME: READVF

DESCRIPTION: This routine reads in header form factor data and loads the various arrays generating all requests for data.

CALLING SEQUENCE: CALL READVF (NODIN1, JEOF, INDEX, NN2, NN, IFRST, NMAX)
NODIN1 - Array of packed node numbers and values
JEOF $-\quad=3 H E N D$ End of data, $\neq 3 H E N D$ Not end of data
INDEX - Number of values stored in NODIN1
NN2 - Number of nodes $* 2$
NN
IFRST - Number of nodes
NMAX

REFERENCED BY: SEGMENT ROUTINE
FRMFRD BLDR

FILES: NOUT - System output file

ROUTINE NAME: RECT
DESCRIPTION: This routine converts point input for rectangles to programcompatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the rectangle.

CALLING SEQUENCE: CALL RECT
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2
FILES: NOUT - System output file

ROUTINE NAME: REFCD
DESCRIPTION: This routine sets up surface description information for reference planes and writes it on the random access file.

CALLING SEQUENCE: CALL REFCD (ISSX)
ISSX - The index of the starting location where surface description data for the reference plane is to be loaded in blank common

REFERENCED BY: SEGMENT ROUTINE
SRFCRD SRFCS1
FILES: NRIO - Random access file

ROUTINE NAME: RETURNS (CDC system function)
DESCRIPTION: This routine releases a local file from a job.

CALLING SEQUENCE: CALL RETURNS (N)
$N=$ Name of file to be released

REFERENCED BY: SEGMENT ROUTINE
SRFCRD SRFCRD

ROUTINE NAME: SCHECK

DESCRIPTION: This routine checks the validity of user-input surface description parameters and sets the default values.

CALLING SEQUENCE: CALL SCHECK (ISSX, IERR)
ISSX - The index of the starting location of surface description data in blank common
IERR - Counter for the number of fatal errors found in the user-input surface descriptions

REFERENCED BY: SEGMENT ROUTINE

SRFCRD SRFCSI

FILES: NOUT - System output file

ROUTINE NAME: SDPSS2

DESCRIPTION: This routine sets up blank common indexes for use in processing the surface description data in pass 2.

GALLING SEQUENCE: CALL SDPSS2

REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD

FLLES: NOUT - System output file

# DESCRIPTION: This routine reads user-input surface description data from a sequential scratch file that was written in surface data pass 1 , converts the data to program compatible surface description parameters, and writes the data on the random access file. 

CALLING SEQUENCE: CALL SDTPS2 (INDEXS, INDEXN, ISAVE)
INDEXS - Array of BCS names and corresponding random access record numbers for surfaces
INDEXN - Array of random access record numbers for nodes
ISAVE - Array of surface numbers and corresponding random access record numbers

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDPSS2
$\begin{array}{ll}\text { FILES: } & \text { NOUT - System output file } \\ & \text { NRIO - Random access file } \\ & \text { NSCR1 - Scratch file }\end{array}$

## ROUTINE NAME: SECOND

DESCRIPTION: This routine returns the central-processor time from the start of job, in seconds, in floating-point format, accurate to one thousandth of a second

CALLING SEQUENCE: CALL SECOND (T)
$T=$ Variable that central processor seconds will be returned to
REFERENCED BY: SEGMENT ROUTINE
TRASYS TRASYS
START START
DATARD DATARD
LOGIC0 LOGIC0
TPGEN TPGEN
RAPUF RAPUP

DESCRIPTION: This routine and the routines that it calls perform the
preprocessor source edit function of the TRASY program.
CALLING SEQUENCE: CALL SEDIT
REFERENCED BY: SEGMENT ROUTINE
START START
FILES: NIN - System input file NOUT - System output file

ROUTINE NAME: SERROR
DESCRIPTION: This routine is called when a caution or error condition results when preprocessing the user's input. This routine and the routines that it calls store the error accounting information and account for proper line-page format on printed error messages.

CALLING SEQUENCE: CALL SERROR (NTYP, NARRW, ILINE, NCOL, KER)
NTYP $=0$ Caution message is to be printed $=1$ Error message is to be printed
NARRW - Column to print error character
ILINE - Number of error message lines to be printed
NCOL $=0$ No output column number on page heading $=1$ Print output column numbers on page heading
KER - The returned caution or error number
REFERENCED BY: SEGMENT ROUTINE SEGMENT ROUTINE
TRASYS HCARD SDPSS2 BOX

|  | CDPRC2 | CALG |
| :--- | :--- | :--- |
|  | FDPRC | CHEC |
|  |  | CONE |
| START | HEADCD | CYLNDR |
| INITAL | OPTNRD |  |

SEDIT SEDIT DISC IMAGES PARAB
EPTAPE POLYGN
ASKCRD TRAFZ
INRDE RECT
MERGC SPHERE

DATARD DATARD BCSRD BCSRD
STORD
QUANRD QUANRD BCSPI
ARRYRD ARRYRD
FRMFRD FRMFRD

## REFERENCED BY: (continued)



## ROUTINE NAME: SFRSI

DESCRIPTION: This routine reads in the requested shadow factor data from the NSHADI file and writes the data to the NPLSR file.
CALLING SEQUENCE: CALL SFRSI (NDE1, NDE2, NDE3, NDE4, IECC, IPCC, NODEA, NODET)
NDE1 - Last word of the IX array that contains the node array directory input by the user
NDE2 - Last word of the IX array that contains the node array directory input from the NSHADI file
NDE3 - Last word of the IX array that contains the shadow factor request directory
NDE4 - Last word of the IX array that contains the scratch random $I / 0$ file index array (used on CDC systems only)
IECC - Output array from this routine that will contain the unpacked cone-clock values
IPCC - Array containing the cone-clock values in packed form read from the NSHADI file in this routine NODEA - Number of nodes in the node array input from user input data
NODET - Number of nodes in the node array input from the NSHADI file
KEY VARIABLES: IX - Preprocessor blank common dynamic storage array
REFERENCED BY: SEGMENT ROUTINE
SHDWRD SHDWRD
FILES: $\begin{aligned} & \text { NOUT - System output file } \\ & \text { NSHADI - Shadow factor user input file }\end{aligned}$

ROUTINE NAME: SFTBRD


ROUTINE NAME: SFUNPK
DESCRIPTION: This routine unpacks the 9 cone and 19 clock values from a 19-word array and generates the expanded 9,19 cone-clock array.

CALLING SEQUENCE: CALL SFUNPK (IPCC, IECC)
IPCC - Array containing information to be unpacked
IECC - Array to contain the unpacked information
REFERENCED BY: SEGMENT ROUTINE
SHDWRD SHDWRD
SPRSI
FILES: NOUT - System output file
NSHADI - Shadow factor user input file


## ROUTINE NAME: SHDWRD

DESCRIPTION: This routine and the routines that it calls read in and process the SHADOW DATA user's input block, combine it with the shadow factor data residing on a shadow factor input tape, and output the data on a file to be processed in the processor phase.
CALLING SEQUENCE: CALL SHDWRD
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD
FILES: NOUT - System output file
NPLSR - File used to transmit the shadow factor data from the preprocessor to the processor
NSHADI- The user-input shadow factor input tape
NRIOS - Scratch random I/O file
DESCRIPTION: This routine skips to end positions after an end-of-file
mark on a specified mass storage unit.
CALLING SEQUENCE: CALL SKFILE (U, N)
U - Unit name or number that is to have the file
skipped
N - The number of files to skip
REFERENCED BY: SEGMENT ROUTINE
SEDIT EPTAPE
GNEDO GNEDO
DATARD STORDT
SHDWRD SHDWRD
SFCIO

## ROUTINE NAME: SKIRD

DESCRIPTION: This routine, along with the routines that it calls, reads in and processes the $I$ and $K$ cards that the user inputs in the SURFACE DATA input block.

CALLING SEQUENCE: CALL SKIRD
REFERENCED BY: SEGMENT ROUTINE
DATARD DATARD

FILES: NOUT - System output file

ROUTINE NAME: SORTD
DESCRIPTION: This routine numerically sorts a doublet array. The original order is not preserved on equal comparisons.

CALLING SEQUENCE: CALL SORTD (IA, NA)
IA - The array to be sorted. The sorted array is also returned in this array
NA - The length of the array to be sorted

REFERENCED BY: SEGMENT ROUTINE
INITAL OPTNRD
QUANRD QUANRD ARRYRD ARRYRD SKIRD SKIRD SRFCRD SRFCS1
REFERENCED BY: (continued)
SEGMENT ROUTINE
BCSRD BCSRD
FRMFRD FRMFRD
SHDWRD SHDWRDSFRSI
FLUXRD FLUXRD
LøGIC1 LOGICILP1
ROUTINE NAME: SORTDB
DESCRIPTION: This routine numerically sorts a doublet array. The origi- nal order is preserved on equal comparisons.
CALLING SEQUENCE: CALL SORTDB (IA, IB, NN)
IA - The array to be sorted. The sorted array is also returned in the arrayIB - A scratch array equal in length to the IA array
NN - The length of the array to be sorted
REFERENCED BY: SEGMENT ROUTINE
FRMFRD ..... BLDR
ROUTINE NAME: ..... SORTS
DESCRIPTION: This routine numerically sorts an array. The original order is not preserved on equal comparisons.
CALLING SEQUENCE: CALL SORTS ..... (A, JJ)A - The array to be sorted. The sorted array isalso returned in this array
JJ - Length of the array to be sorted
REFERENCED BY: SEGMENT ROUTINE
BCSRD ..... BCSRD
ROUTINE NAME: SPHERE
DESCRIPTION: Converts point input for spheres to program-compatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the sphere.
CALLING SEQUENCE: CALL SPHERE
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 ..... SDTPS2
FILES: NOUT - System output file
ROUTINE NAME: SRFCBC
DESCRIPTION: This routine processes the BCS user-input cards input in the BCS DATA block.
CALLING SEQUENCE: CALL SRFCBC
REFERENCED BY: SEGMENT ROUTINE
SRFCRD ..... SRFCRD
FILES: NOUT - System output file
ROUTINE NAME: SRFCDM
DESCRIPTION: This routine processes the DIMENSION variable and itsassociated data values that the user inputs as part ofthe surface description input.
CALLING SEQUENCE: CALL SRFCDM (KTYPE, IDM, JDM)KTYPE - The type of surface being processed:

| 1 = Rectangle | 6 = Sphere |
| :---: | :---: |
| 2 = Disk | 7 = Parabaloid |
| $3=$ Trapezoid | $8=5-S i d e d$ box |
| 4 = Cylinder | $9=6$-Sided box |
| 5 = Cone | $10=$ Polygon |IDM - Length of the JDM arrayJDM - Array containing the data to be processed

REFERENCED BY: SEGMENT ROUTINE
SRFCRD SRFCS1
FILES: NOUT - System output file

# DESCRIPTION: This routine and the routines that it calls read in and process the surface description data the user inputs in the SURFACE DATA block. 

GALLING SEQUENCE: CALL SRFGRD

| REFERENCED BY: SEGMENT | ROUTINE |  |
| :--- | :--- | :--- |
|  | DATARD | DATARD |

FILES: NOUT - System output file NRIOS - Scratch random I/O file

ROUTINE NAME: SRFCS1
DESCRIPTION: This routine reads in the $S, R, N$, and $D$ cards of the userinput SURFACE DATA block, decodes these cards, and writes the surface information to file NRIOS for input to the surface data pass 2 processing.

CALLING SEQUENCE: CALL SRFCS1

```
REFERENCED BY: SEGMENT ROUTINE
    SRFCRD SRFCRD
FILES: NOUT - System output file
        NRIOS - Temporary random I/O scratch file for passing the surface
        description information to the surface data pass 2 processor
```


## ROUTINE NAME: START

DESCRIPTION: This routine calls routines that initialize the label commons, write the TRASYS preprocessor banner page on the system output file, read in and process the user-input OPTION DATA block, and perform the model collecting and/or source editing functions.

## CALLING SEQUENCE: CALL START

REFERENCED BY: SEGMENT ROUTINE

TRASYS TRASYS
ROUTINE NAME: ..... STORDT
DESCRIPTION: This routine writes all header records to internal datafiles and keeps count of the internal files.
CALLING SEQUENCE: CALL STORDT (NUNIT, ISTEP, LABEL1, LABETL2)
NUNIT - Unit to contain data
ISTEP - Step number
LABEL1 - Identifies 1
LABEL2 - Identifies 2
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 AUTOCMFRMFRD FINALSHDWRD SHDWRDFLUXRD DIBLDRCRSPRD CRSPRD
ROUTINE NAME: STUFDT
DESCRIPTION: This routine stores all data directly applicable to each node/surface that requires no conversion determined in surface data pass
CALLING SEQUENCE: CALL STUFDT
REFERENCED BY: SEGMENT ROUTINE
SDPSS2 ..... SDTPS2
ROUTINE NAME: TIME (CDC system routine)
DESCRIPTION: This routine will return the current clock time in Hollerithcode of the format...
HH.MM.SS (CDC) ..... HHMMSS (UNIVAC)
CALLING SEQUENCE: CALL TIME (TME)
TME - The returned time variable
REFERENCED BY: SEGMENT ROUTINE
TRASYS ..... PAGEH

# DESCRIPTION: This routine writes the variable record pointers for the random $I / O$ file and the TRASYS processor logical file designators to the NSQNTL file. 

CALLING SEQUENCE: CALL TPGEN

| REFERENCED BY: SEGMENT | ROUTINE |  |
| :--- | :--- | :--- |
|  | TRASYS | TRASYS |

FILES: NSQNTL - The preprocessor and processor communication file

ROUTINE NAME: TRAPZ
DESCRIPTION: This routine converts point input for trapezoids to programcompatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the trapezoid.

CALLING SEQUENCE: CALL TRAPZ (ISCS)

ISCS - Flag to indicate if points were input in the surface coordinate system

REFERENCED BY: SEGMENT ROUTINE
SDPSS2 SDTPS2

FILES: NOUT - System output file

ROUTINE NAME: TRASYS
DESCRIPTION: This routine is the major segment driver for the TRASYS preprocessor. It calls five subsegments; and initialization segment, data read segment, logic read setment, communication file initialization segment, and the wrapup segment.

CALLING SEQUENCE: None
REFERENCED BY: None (this is the main preprocessor segment.)
ROUTINE NAME: TRNGLE
DESCRIPTION: This is an entry point in subroutine TRAPZ that converts point input for triangles to program-compatible surface description parameters and sets up Euler angles and a position vector to transform the ICS, BCS, or CCS into the SCS of the triangle.
CALLING SEQUENCE: CALL TRNGLE (ISCS)ISCS - Flag to indicate if points were input in thesurface coordinate system
REFERENCED BY: SEGMENT ROUTINES
SDPSS2 IMAGES
POLYGN
FILES: NOUT - System output file
ROUTINE NAME: TRS3
DESCRIPTION: This routine transforms a vector in an SCS to a vector inthe ICS, BCS, or CCS.
CALLING SEQUENCE: CALL TRS3 (X, Y, Z, A, B, C, RX, RY, RZ, TRAN)
KEY VARTABLES: $X, Y, Z$ - Components of vector in ICS, BCS, or CCS A, B, C - Components of vector in SCS RX, RY, RZ - Position vector of SCS origin in ICS, BCS, or CCS
TRAN - $3 x 3$ transformation matrix
REFERENCED BY: SEGMENT ROUTINES
SDPSS2 ..... BOX
IMAGESSDTPS2
ROUTINE NAME: WCMMNDESCRIPTION: This routine writes to file NCMPL a Fortran-labeledcommon statement based on the information in the argu-ment list.
CALLING SEQUENCE: CALL WCMMN (NAME, LNM, N, NT)
NAME - Common name
LNM - Array containing a list of names to bethe variables within the common beingwritten
N - Length of the LiNM arrayNT - Type of common to write$=0$ Single-value variable name$=1$ Single-dimension (vector) names. TheLNM under this option is in format...Word 1 NAME
2 Dimension3 INAME
(etc)
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 WCOMO
FILES: NCMPL - The file that the generated Fortran cards are written to
ROUTINE NAME: WCOMO
DESCRIPTION: This routine writes the TRASYS main-program segment commons to the NCMPL file.
CALLING SEQUENCE: CALL WCOMO
REFERENCED BY: SEGMENT ROUTINE
LOGICO WPRGOWRITNP
LOGIC2 LOGIC2
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated Fortran cards are written to

DESCRIPTION: This routine is a collection of entry points that write the Fortran common statements of the processor subsegments.

CALLING SEQUENCE: WCOM is not called, only the entry points are called.
ENTRY POINTS: CALL CM30 - FFPROG segment
CALL CM40 - SFPROG segment
CALL CM50 - NPPROG segment
CALL CM60 - OPPROG segment
CALL CM70 - DIPROG segment
CALL CM80 - GBPROG segment
CALL CM90 - RKPROG segment
CALL CM100 - AQPROG segment
CALL CM110 - QOPROG segment
CALL CM120 - RBPROG segment
CALL CM140 - RCPROG segment
CALL CM150 - DRPROG segment

REFERENCES: None

ROUTINE NAME: WGOTO
DESCRIPTION: This routine writes to the file NCMPL a Fortran-computed GO TO statement based on the information in the argument list.

CALLING SEQUENCE: CALL WGOTO (NSS, NIS, NSN, NAME)
NSS - Starting statement number
NIS - Number to increment the statement number
NSN - Number of statement numbers wanted
NAME - Name of the variable to place on the computed GO TO statement

REFERENCED BY: STATEMENT ROUTINE

| LOGIC0 | WRITNP |
| :--- | :--- |
| LOGIC2 | LOGIC2 |

FILES: NCMPL - The file that the generated processor Fortran cards are written to

REFERENCES: None
ROUTINE NAME: WPRGO
DESCRIPTION: This routine writes the processor main-program segment to the NGMP file.
CALLING SEQUENCE: CALL WPRGO
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 ..... WRI TNP
LOGIC2 ..... LOGIC2
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: WPRG2
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver RDPROG is written to the file NCMPL.
CALLING SEQUENCE: CALL WPRG2
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 . WRITNP
LOGIC3 ..... LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards arewritten to

## ROUTINE NAME: WPRG3

# DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver FFPROG is written to the file NCMPL. 

CALLING SEQUENCE: CALL WPRG3
REFERENCED BY: SEGMENT ROUTINE

LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: WPRG4
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver SFPROG is written to the file NCMPL.

CALLING SEQUENCE: CALL WPRG4
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

## ROUTINE NAME: WPRG5

# DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver NPPROG is written to the file NCMPL. 

CALLING SEQUENCE: CALL WPRG4

REFERENCED BY: SEGMENT ROUTINE

LOGIC0 WRITNP
LOGIC3 LOGIC3

FILES: NCMPL - The file that the generated processor Fortran cards are written to

## ROUTINE NAME: WPRG6

DESCRIPTION: This routine name is an entry point into the routine WPROG. When the entry point name is called, the Fortran processor subsegment driver OPPROG is written to the file NCMPL.

CALLING SEQUENCE: CALL WPRG6

REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: WPRG7
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver DIPROG is written to the NCMPL file.

CALLING SEQUENCE: CALL WPRG7
REFERENCED BY: SEGMENT ROUTINE

LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: WPRG8
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver GBPROG is written to the NCMPL file.
CALLING SEQUENCE CALL WPRG8
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 ..... LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: ..... WPRG9
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver RKPROG is written to the NCMPL file.
CALLING SEQUENCE: CALL WPRG9
REFERENCED BY: SEGMENT ROUTINELOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to
ROUTINE NAME: WPRG10
DESCRIPTION: This routine name is an entry point into the routine WPROG.When this entry point name is called, the Fortran processorsubsegment driver $A Q P R O G$ is written to the NGMPL file.
CALLING SEQUENCE: CALL WPRG10
REFERENCED BY: SEGMENT ..... ROUTINE
LOGIC3 ..... LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards arewritten to

```
DESCRIPTION: This routine name is an entry point into the routine WPROG.
        When this entry point name is called, the Fortran processor
        subsegment driver QOPROG is written to the NCMPL file.
GALLING SEQUENCE: CALL WPRG11
REFERENCED BY: SEGMENT ROUTINE
    LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are
        written to
```

ROUTINE NAME: WPRG12
DESCRIPTION: This routine name is an entry point into the routine WPROG.
When this entry point name is called, the Fortran processor
subsegment driver RBPROG is written to the NCMPL file.
CALLING SEQUENCE: CALL WPRG12
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are
written to
ROUTINE NAME: WPRG13
DESCRIPTION: The routine name is an entry point into the routine WPROG.
When this entry point name is called, the Fortran processor
subsegment driver PLPROG is written to the NCMPL file.
CALLING SEQUENCE: CALL WPRG13
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3

FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: WPRG14
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver RCPROG is written to the NCMPL file.

CALLING SEQUENCE: CALL WPRG14
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: WPRGL5
DESCRIPTION: This routine name is an entry point into the routine WPROG. When this entry point name is called, the Fortran processor subsegment driver DRPROG is written to the NCMPL file.

CALLING SEQUENCE: CALL WPRG15
REFERENCED BY: SEGMENT ROUTINE
LOGIC3 LOGIC3
FILES: NCMPL - The file that the generated processor Fortran cards are written to

ROUTINE NAME: WPROG
DESCRIPTION: This routine is a collection of entry points that writes the Fortran main routines of the processor subsegments.

CALLING SEQUENCES: WPROG is not called, only the entry points are called
ENTRY POINTS: CALL WPRG2 - RDPROG segment
CALL WPRG3 - FFPROG segment
CALL WPRG4 - SFPROG segment
CALL WPRG5 - NPPROG segment
CALL WPRG6 - OPPROG segment
CALL WPRG7 - DIPROG segment
CALL WPRG8 - GBPROG segment
CALL WPRG9 - RKPROG segment
CALL WPRG10 - AQPROG segment
CALL WPRGll - QOPROG segment
CALL WPRG12 - RBPROG segment
CALL WPRG13 - PLPROG segment
CALL WPRG14 - RCPROG segment
CALL WPRG15 - DRPROG segment
ROUTINE NAME: WRITNP
DESCRIPTION: This routine writes the processor ODPROG subsegment, whichoverrides the user-input LOGIC DATA block when an error isencountered in the user input. This generated Fortranoperation data block causes the node plotter to plot eachof the BCS-defined data blocks.
CALLING SEQUENCE: CALL WRITNP (NBCS, NBCSA)NBCS - Number of BCS-defined surface systems to beplotted
NBCSA - The array that contains the names of theBCS surface systems
REFERENCED BY: SEGMENT ROUTINE
LOGIC0 LOGICO
FILES: NOUT - System output fileNCMPL - The file that the generated processor Fortran cards arewritten to
ROUTINE NAME: WSCOPE (CDC only)
DESCRIPTION: This routine displays a 6 -word message, with the last word zeroed, at the computer operator's console. The only information passed to this routine is program status information.
CALLING SEQUENCE: CALL WSCOPE (MSG)
MSG - Message to be written
REFERENCED BY: SEGMENT ROUTINE
TRASYS TRASYS
START START
DATARD DATARD
LOGIC0 LOGICO
TPGEN TPGEN
C. FILE DEFINITIONS - PREPROCESSOR

## FILE NAME: CMERG

PROGRAM VARIABLE NAME: NCMG
UNIT REFERENCE (UNIVAC/JSC): 12
PURPOSE: This file is the user's card image merge file.
SEGMENT REFERENCE: SEDIT (READ)

FILE NAME: CMPL
PROGRAM VARIABLE NAME: NCMPL
UNIT REFERENCE (UNIVAC/JSC): 20
PURPOSE: This is a compile file that contains the processor FORTRAN routines generated by the preprocessor.

SEGMENT REFERENCES: LOGIC0 (WRITE)
LOGIC2 (WRITE)
LOGIC3 (WRITE)

FILE NAME: DATAI
PROGRAM VARIABLE NAME: NDI
UNIT REFERENCE (UNIVAC/JSC): 4
PURPOSE: This file is generated in the SEDIT segment from the INPUT, EDITI, CMERG, and EMERG files. It contains the users input source data, which are read as the input data file in all other segments of the preprocessor.

SEGMENT REFERENCES: SEDIT (WRITE) DCMNRD (READ) GNEDO (READ) FRMFRD (READ) QWANRD (READ) SHDWRD (READ) ARRYRD (READ) FLUXRD (READ) SKIRD (READ) ORSPRD (READ) SRFCRD (READ) LOGICI (READ) BCSRD (READ) LOGIC3 (READ)
FILE NAME: ..... DIR
PROGRAM VARIABLE NAME: NDIR
UNIT REFERENCE (UNIVAC/JSC): ..... 22
PURPOSE: This is the flux data restart file, which contains the flux data request matrix that is generated by the preprocessor and communicated to the processor.
SEGMENT REFERENCES: FLUXRD (WRITE)
FILE NAME: EDITI
PROGRAM VARIABLE NAME: NEDI
UNIT REFERENCE (UNIVAC/JSC): ..... 10
PURPOSE: This file contains the user's source edit input tape.
SEGMENT REFERENCES: SEDIT (READ)GNEDO (READ)
FILE NAME: EDITO
PROGRAM VARIABLE NAME: NEDO
UNIT REFERENCE (UNIVAC/JSC): ..... 11
PURPOSE: This file is the user's source edit output tape.
SEGMENT REFERENCES: GNEDO (WRITE)
FILE NAME: EMERG
PROGRAM VARIABLE NAME: ..... NEMG
UNIT REFERENCE (UNIVAC/JSC): ..... 13
PURPOSE: This file is the user's edit input merge file.
SEGMENT REFERENCES: MCOLL (WRITE)
SEDIT (READ)

## FILE NAME: FFR

PROGRAM VARIABLE NAME: ..... NFFR
UNIT REFERENCE (UNIVAC/JSC): ..... 21
PURPOSE: This is the form factor restart file that contains the form factor request matrix generated by the preprocessor and communicated to the processor.
SEGMENT REFERENCES: FRMFRD (WRITE)
FILE NAME: GBIRR
PROGRAM VARIABLE NAME: NGBIRR
UNIT REFERENCE (UNIVAC/JSC): ..... 23
PURPOSE: This file contains the correspondence data that were processed in the correspondence data read segment in the preprocessor. These data are communicated to the processor through this file.
SEGMENT REFERENCES: CRSPRD (WRITE)
FILE NAME: GBSOR
PROGRAM VARIABLE NAME: NGBSOR
UNIT REFERENCE (UNIVAC/JSC): ..... 24
PURPOSE: This file is the gray-body solar restart file, which is not used at present.
SEGMENT REFERENCES: None
FILE NAME: INPUT
PROGRAM VARIABLE NAME: ..... NIN
UNIT REFERENCE (UNIVAC/JSC): ..... 5
PURPOSE: This file is the system input file, usually the card reader.
SEGMENT REFERENCES: INITAL (READ)
MCOLL (READ)SEDIT (READ)
FILE NAME: OUTPUT
PROGRAM VARIABLE NAME: NOUT
UNIT REFERENCE (UNIVAC/JSC): ..... 6
PURPOSE: This file is the system output file, usually the line printers.SEGMENT REFERENCES: A11 (WRITE)
FILE NAME: PLSR
PROGRAM VARIABLE NAME: NPLSR
UNIT REFERENCE (UNIVAC/JSC): ..... 25
PURPOSE: This file contains the restart shadow factors that are gener- ated by the preprocessor and passed to the processor.
SEGMENT REFERENCES: SHDWRD (WRITE)
FILE NAME: PUNCH
PROGRAM VARIABLE NAME: NPNCH
UNIT REFERENCE (UNIVAC/JSC): ..... 7
PURPOSE: This file is the system punch file.
SEGMENT REFERENCES: SEDITI (WRITE)

## FILE NAME: TAPE1

## PROGRAM VARIABLE NAME: NSC1

UNIT REFERENCE (UNIVAC/JSC): 1
PURPOSE: This file is scratch file 1 , which is used as temporary storage for intermediate data generated within the preprocessor segments. It is also used to communicate data between segments.

```
SEGMENT REFERENCES: QUANRD (WRITE & READ) FRMFRD (WRITE & READ)
    ARRYRD (WRITE & READ) LOGIC1 (WRITE)
    SKIRD (WRITE & READ) LOGIC2 (READ)
```


## FILE NAME: TAPE2

PROGRAM VARIABLE NAME: NSC2
UNIT REFERENCE (UNIVAC/JSC): 2
PURPOSE: This is scratch file 2 , which is used as temporary storage for intermediate data generated within the preprocessor segments. Is is also used to communicate data between segment.

SEGMENT REFERENCES: QUANRD (WRITE \& READ)
ARRYRD (WRITE \& READ)
FRMFRD (WRITE \& READ)

FILE NAME: TAPE3

PROGRAM VARIABLE NAME: NSC3

UNIT REFERENCE (UNIVAC/JSC): 3
PURPOSE: This is scratch file 3, which is used as temporary storage for intermediate data generated within the preprocessor segments. It is also used to communicate data between segments.

SEGMENT REFERENCES: FRMFRD (WRITE \& READ)

```
PURPOSE: This is the main working random I/O file used in communicating
    data from one segment to another within the preprocessor, and
    passing array data, quantities data, and surface data to the
    processor.
\begin{tabular}{lll} 
SEGMENT REFERENCES: & INITAL (WRITE) & SDPSS2 (WRITE) \\
& QUANRD (WRITE) & BCSRD (WRITE) \\
& ARRYRD (WRITE) & LOGIC2 (WRITE \& READ)
\end{tabular}
```

FILE NAME: RIOS

PROGRAM VARIABLE NAME: NRIOS

UNIT REFERENCE (UNIVAC/JSC): 9
PURPOSE: This file is the scratch random I/O file. It is used as temporary storage for intermediate data generated within the preprocessor and is also used to communicate data between segments.

SEGMENT REFERENCES: SRFCRD (WRITE)
SDPSS2 (READ)

FILE NAME: RSTRI

PROGRAM VARIABLE NAME: NRSI

UNIT REFERENCE (UNIVAC/JSC): 14
PURPOSE: This file is the user's permanent input restart file. It is not used at present.

SEGMENT REFERENCES: None

FILE NAME: RSTRO
PROGRAM VARIABLE NAME: NRSO
UNIT REFERNECE (UNIVAC/JSC): 15
PURPOSE: This file is the user's permanent output restart file. It is not used at present.

SEGMENT REFERENCES: None

FILE NAME: RTI
PROGRAM VARIABLE NAME: NRTI
UNIT REFERENCE (UNIVAC/JSC): 18
PURPOSE: This file is the user's temporary input restart file. It is not used at present.

SEGMENT REFERENCES: None

FILE NAME: SHADI
PROGRAM VARIABLE NAME: NSHADI
UNIT REFERENCE (UNIVAC/JSC): 27
PURPOSE: This file contains the user-input shadow factor data tape.
SEGMENT REFERENCES: SHDWRD (READ)

FILE NAME: SHADO
PROGRAM VARIABLE NAME: NSHADO
UNIT REFERENCE (UNIVAC/JSC): 28
PURPOSE: This file contains the user-output shadow factor data tape.
SEGMENT REFERENCES: SHDWRD (WRITE)

```
FILE NAME: SQNTL
PROGRAM VARIABLE NAME: NSQNTL
UNIT REFERENCE (UNIVAC/JSC): 16
PURPOSE: This is the sequential communication file between the
    preprocessor and processor.
SEGMENT REFERENCES: TPGEN (WRITE)
FILE NAME: TQR
PROGRAM VARIABLE NAME: NTQR
UNIT REFERENCE (INIVAC/JSC): 26
PURPOSE: This Eile is the total "Q" restart file. It is not used at
    :present.
SEGMENT REFERENCES: None
```


## LABELED COMMON /CARD/

NCDTYP - Variable that contains the first 6 characters of the last input card read
IND - Array variable that contains the 66 characters from Col. 7 thru col. 72 of the last input card read
NNED - New edit number of the last card read
NOED - Old edit number of the last card read
LMOD - Modification label of the last card read
ID - Number of decoded words in the NDOT and IDOT arrays
NDOT - The array containing the decoded words of the last input card that was decoded
IDOT - The array containing the type of word decoded in the NDOT array
$=-(1 R I) \quad$ Integer word $=-(1 R F) \quad$ Floating-point word = -(1RS) Special character $=+$ NUMBER Hollerith word character count
JDOT - The array containing the start Col. numbers of the input card data fields
IBE - Last word in the INB buffer array that has been processed
IBT - Last word in the INB buffer array filled with input cards
INB - Buffer array that the 46 cards are read into
IEOF - End of file flag
$=0$ No end of file encountered
$=1$ End of file has been encountered
NER - Subroutine independent error flag
NRECN - The record number currently being processed on file DTI

LABELED COMMON /CHRCTR/

| N1RA | $=1 R A$ |
| :--- | :--- |
| N1RB | $=1 R B$ |
| N1RC | $=1 R C$ |
| $N 1 R D$ | $=1 R D$ |
| N1RE | $=1 R E$ |
| N1RH | $=1 R H$ |
| N1RI | $=1 R I$ |
| N1RK | $=1 R K$ |
| N1RL | $=1 R L$ |
| N1RM | $=1 R M$ |
| N1RN | $=1 R N$ |
| N1RP | $=1 R P$ |
| N1RR | $=1 R R$ |
| N1RS | $=1 R S$ |
| N1RT | $=1 R T$ |
| N1RX | $=1 R X$ |
| N1RY | $=1 R Y$ |
| N1RZ | $=1 R Z$ |
| N1R0 | $=1 R 0$ |
| N1R9 | $=1 R 9$ |
| N1RPR | $=1 R$ |
| N1RDO | $=1 R \$$ |
| N1RAS | $=1 R *$ |
| N1RSL | $=1 R /$ |
| N1RPL | $=1 R+$ |
| N1RMI | $=1 R-$ |
| N1RCM | $=1 R$, |
| N1REQ | $=1 R=$ |
| N1RLP | $=1 R($ |
| N1RRP | $=1 R)$ |
| N1RBK | $=1 R$ |

NNODE - Number of nodes calculated in the preprocessor
NPAGE - Page number of the current page being written to the output file
NLINE - Line number of the last line written to the output file
MLINE - Maximum number of lines allowed on an output page less 3 1ines
MR77 - Variable used in masking operations
MR67 - Variable used in masking operations
MR127 - Variable used in masking operations
MRBLK - Variable used in checking for blank characters
NBLANK - A word containing an all-blank Hollerith code
IR1WD - A word containing a code that will be the first word of each record written to a tape file
MAXBC - Maximum length of blank common
MAXF - Maximum core filed length possible for the run
NA - Contains the Hollerith code (N/A)
ISPCL - Denotes a special character decoded (-1RS)
INTEG - Denotes an integer word decoded (-1RI)
IFLT - Denotes a floating-point number decoded (-1RF)
NEREC - Number of binary records written to file DTI
NFTPRC - Number of tape feet pre-record ( $510 * 60 \mathrm{bits} / \mathrm{rec}$ ) $=0.30$ ( 1600 bpi - 9-track) $=0.55$ ( 800 bpi - 7-track) $=0.80$ ( 556 bpi - 7-track)
MLABEL - Current edit modifier label
NONE - Contains the Hollerith code (none)
INPTSF - Multi-shadow factor input block flag

| LABELED COMMON /CPCORE/ |  |
| :---: | :---: |
| TCPST | - Central processor (CP) time of start of preprocessor |
| TCPMC | - CP time for model collect editing |
| ICRMC | - Minimum core for model collect editing |
| TCPE | - CP time for source editing |
| ICRE | - Minimum core for source editing |
| TCPQ | - CP time for compiling quantities data |
| ICRQ | - Minimum core for compiling quantities data |
| TCPA | - CP time for compiling array data |
| ICRA | - Minimum core for compiling array data |
| TCPS 1 | - CP time for compiling surface data in pass 1 |
| ICRS 1 | - Minimum core for compiling surface data in pass 1 |
| TCPS2 | - CP time for compiling surface data in pass 2 |
| ICRS 2 | - Minimum core for compiling surface data in pass 2 |
| TCPB | - CP time for compiling BCS data |
| ICRB | - Minimum core for compiling BCS data |
| TCPFF | - CP time for compiling form factor data |
| ICRFF | - Minimum core for compiling form factor data |
| TCPSW | - CP time for compiling shadow data |
| ICRSW | - Minimum core for compiling shadow data |
| TCPF | - CP time for compiling flux data |
| ICRF | - Minimum core for compiling flux data |
| TCPC | - CP time for compiling correspondence data |
| ICRC | - Minimum core for compiling correspondence data |
| TCPO | - CP time for compiling operation data |
| ICRO | - Minimum core for compiling operation data |
| TCPSR | - CP time for initialization - RSTRTO and SQNTL |
| ICRSR | - Minimum core initialization - RSTRTO and SQNTL |
| TCPD | - CP time for processing documentation data block |
| ICRD | - Minimum core for processing documentation data |
| TCPS | - CP time for preprocessing subroutine data |
| ICRS | - Minimum core for compiling subroutine data |
| TCPR | - CP time for preprocessing restart data |
| ICRR | - Minimum core for processing restart data |
| IPPS T | - Preprocessor (PP) time of start of preprocessor |
| IPPMC | - PP time for model collect editing |
| IPPE | - PP time for source editing |
| IPPQ | - PP time for compiling quantities data |
| IPPA | - PP time for compiling array data |
| IPPS 1 | - PP Time for compiling surface data in pass 1 |
| IPPS2 | - PP time for compiling surface data in pass 2 |
| IPPB | - PP time for compiling BCS data |
| IPPFF | - PP time for compiling form factor data |
| IPPSW | - PP time for compiling shadow data |
| IPPF | - PP time for compiling flux data |
| IPPC | - PP time for compiling correspondence data |
| IPPO | - PP time for compiling operations data |
| IPPSR | - PP time for initialization of SQNTL and RSTRTO |
| IPPO | - PP time for processing documentation data block |
| IPPS | - PP time for compiling subroutine data |
| IPPR | - PP time for compiling restart data |



LABELED COMMON /CVFAC/
DTR - Degrees to radians
RTD - Radians to degrees
PI - PI

LABELED COMMON /DIMES/
NSRFC - Number of surfaces read in by the preprocessor
NWDSMX - Maximum number of words on longest surface record
NOFBCS - Number of BCS read in by the preprocessor
NTSPSF - Total number of specular surfaces

LABELED COMMON /ERROR/

NERR - Total number of errors detected by the preprocessor NCTN - Total number of cautions detected by the preprocessor
IERR - Number of error words filed in the KERR array
ICTN - Number of caution words filed in the KCTN array

LABELED COMMON /FILE/


## LABELED COMMON /FNAME/

These variables are used to transfer file information from the options card read-in routine to the edit and history routines

| JEDI | $=1 \mathrm{H}$ |
| ---: | :--- |
| JCMG | $=1 \mathrm{H}$ |
| JEMG | $=1 \mathrm{H}$ |
| JEDO | $=1 \mathrm{H}$ |
| JRSI | $=1 \mathrm{H}$ |
| JRSO | $=1 \mathrm{H}$ |
| JRTI | $=1 \mathrm{H}$ |
| JRTO | $=1 \mathrm{H}$ |
| JSHADI | $=1 \mathrm{H}$ |
| JSHADO | $=1 \mathrm{H}$ |
| JBCDOU | $=1 \mathrm{H}$ |
| JTRAJ | $=1 \mathrm{H}$ |
| JUSERI | $=1 \mathrm{H}$ |

LABELED COMMON /HEAD/

| LMDTE - Date of last modification |  |
| ---: | :--- |
| NVRSN - Current TRASYS version and modification number |  |
| NDTE - Job run date |  |
| NTME - Job run start time |  |
| NJOB - Job number |  |
| NTITLE - Array containing the TRASYS internal title that is printed |  |
| at the top of each output page |  |
| ITITLE - Array containing the user-input title for the primary |  |
|  | model. This title is printed at the top of each |
|  | printed page |

LABELED COMMON /OPTION/
IRSTART - Flag for designating a restart or start run
IPRNTS - Flag for type of source edit printing
IPNCHS - F1ag for type of source edit punching
IGO - Flag for editing and preprocessing the data, or just editing the data and terminating
IPRNTE - Flag for type of edit directive output
IRLBLS - Flag for relabeling the source
MDLNM - Primary model name that is to be processed
MDLNNM - Input model name to be changed to MDLNNM after editing
IDMPD - Flag for printing documentation data block
IERCNT - Preprocessor error - normal continuation flag
MAXBCP - Processor dynamic storage allocator
ERPLOT - Generate node plot in case of errors

MRREC - Maximum number of records that can be written to the random I/O file
NRREC - Number of records that have been written to the random I/O file
NRCQV - Random I/O record that the control constant value array is written to
NLCQV - Number of words in the control constant value array record
NRUQD - Random I/O record that the user constant directory array record is written to
NLUQD - Number of words in the user constant directory array record
NRUQV - Random I/O record that the user constant value array is written to
NLUQV - Number of words in the user constant value array record
NRAND - Random I/O record that the user array name directory array is written to
NRAPD - Random I/O record that the user array position directory array is written to
NLAD - Number of words in the user array directory array record
NRAV - Random I/O record that the user array value array is written to
NLAV - Number of words in the user array value array record
NRIS - Random I/O record that the surface index is written to
NLIS - Number of words in the surface index record
NRIN - Random I/o record that the node index is written to
NLIN - Number of words in the node index record
NRBCSD - Random I/O record that the BCS directory is written to
NLBCSD - Number of words in the BCS directory record
NRBCSR - Random I/O record that the BCS index record is written to
NLBCSR - Number of words in the BCS index record
NRSD - Random I/O record that the step directory is written to
NLSD - Number of words $1 a$ the step directory
NRTD - Random I/O record that the combined directory is written to
NLTD - Number of words in the combined directory
NRBCSN - Random I/O record that the BCS names are written to NLBCSN - Number of BCS names written to the NRBCSN record

```
NRT - Random I/O record that the title array is written to
NLT - Number of words in the title array record
NRCQD - Random I/O record that the control constant directory
    array is written to
NLCQD - Number of words in the control constant directory
```

LABELED COMMON /TRACE/
ITRC12 - Trace printout flag for segment MCOLL
ITRCED - Trace printout flag for segments SEDIT \& GNEDO
ITRCDM - Not used
ITRC21 - Trace printout flag for segment QUANRD
ITRC22 - Trace printout flag for segment ARRYRD
ITRC23 - Trace printout flag for segment SKIRD
ITRC24 - Trace printout flag for segment SRFCRD
ITRC25 - Trace printout flag for segment SDPSS2
ITRC26 - Trace printout flag for segment BCSRD
ITRC27 - Not used
ITRC28 - Trace printout flag for segment FRMFRD
ITRC29 - Trace printout flag for segments FLUXRD and CRSPRD
ITRC31 - Trace printout flag for segment LOGIC1
ITRC32 - Trace printout flag for segment LOGIC2
ITRC33 - Trace printout flag for segment LOGIC3
ITRCTG - Trace printout flag for segment TPGEN
ITRCRS - Trace printout flag for segment RESTRT
ITRCON - Trace flag to be checked for
ITRCSF - Trace printout flag for segment SHDWRD
A. SEGMENT DEFINITIONS

SEGMENT NAME: AQCAL
PURPOSE: This segment computes absorbed heat rates in two wavebands, accounting for specular and diffuse reflection (Fig. III-1).

## RESTRICTIONS: Appropriate direct-irradiation and gray-body factors must be located on the DI, GBIR, and GBSO files before execution.

## CALLING SEQUENCE: L AQCAL

OUTPUT: Absorbed total heat rates written to file TQ.

SEGMENT NAME: DICAL
PURPOSE: This segment computes solar, planetary, and albedo irradiation incident on spacecraft nodes (Fig. III-2).

RESTRICTIONS: Execution is possible after previous calls have been made to define spacecraft geometry, location in space, characteristics and distances of heat source bodies, and computation accuracy parameters.

CALLING SEQUENCE: L DICAL
OUTPUT: Printed, punched, written to files DI, RTO, and PLS.

## SEGMENT NAME: FFCAL

PURPOSE: This segment calculates all form factors for the active configuration (Fig. III-4).

RESTRICTIONS: None
CALLING SEQUENCE: L
OUTPUT: Printed, punched, written to file FF.


Figure III-1 Segment AQCAL FLow Diagram


Figure III-2 Segment DICAL Flow Diagrom


Eigure III-3 Segment DRCAL FLow Diagram


Figure III-4 Segment FFCAL FZow Diagram


Figure III-5 Segment RBCAL FLow Diagram
SEGMENT NAME: GBCAL
PURPOSE: This segment computes and stores the gray-body factormatrix (Fig. III-6).
RESTRICTIONS: Requires form factor data on file FF.
CALLING SEQUENCE: $\underline{L}$ GBCAL
OUTPUT: Writes gray-body factor matrices to GBIR and/or GBSO.
SEGMENT NAME: NPLOT
PURPOSE: This segment generates pictorial plots of nodal sur-faces (Fig. III-7).
RESTRICTIONS: None
CALLING SEQUENCE: L NPLOT
OUTPUT: Printed, plot file.
SEGMENT NAME: OPLOT
PURPOSE: This segment generates pictorial plots of the space-craft in orbit (Fig. III-8).
RESTRICTIONS: None
CALLING SEQUENCE: $\underline{L}$ OPLOT
OUTPUT: Printed, plot file.
SEGMENT NAME: PLOT
PURPOSE: This segment generates function vs time plots of ab-sorbed and incident heat rates and fluxes. When usedin conjunction with operations block FORTRAN that writesdata to a plot data unit, this segment provides a gen-eral $x$ vs $y$ plot capability (Fig. III-9).
RESTRICTIONS: Reference Subroutine PLDATA
CALLING SEQUENCE: L PLOT
OUTPUT: Printed, plot file.


Figure III-6 Segment GBCAL Flow Diagram


Figure III-7 Segment NPLOT FLow Diagram


Figure III-B Segment OpLOT Flow Diagram


Figure III-9 Segment PLOT Flow Diagrom

## SEGMENT NAME: QOCAL

```
PURPOSE: This segment accesses absorbed flux data and generates
    orbital average and absorbed flux vs time arrays (Fig. ILI-10).
RESTRICTIONS: Requires data on the TQ file.
CALLING SEQUENCE: L
OUTPUT: Printed, punched, BCD tape (File BCDOU).
```


## SEGMENT NAME: RCCAL

PURPOSE: This segment computes radiation conductors and simpli- fies and condenses these conductors using the ERN and MESS techniques (Fig. III-11).
RESTRICTIONS: Requires data on the GBIR file.
CALLING SEQUENCE: $\underline{\text { RCCAL }}$
OUTPUT: Printed, punched, BCD tape (file BCDOU).
SEGMENT NAME: RKCAL
PURPOSE: This segment computes radiation conductor values (Fig. III-12).
RESTRICTIONS: Requires data on the GBIR file.
CALLING SEQUENCE: $\underline{L} \underline{\text { RKCAL }}$
OUTPUT: Printed, punched, BCD tape (file BCDOU).
SEGMENT NAME: SFCAL
PURPOSE: This segment computes tables of internode blockage (shadow) factors for use in direct irradiation calcu- lations. When a complete shadow factor tape supplied, SFCAL is executed to pass the shadow tables to file PLSR and initialize DICAL to compute irradiations using the shadow tables (Fig. III-13).
RESTRICTIONS: None
CALLING SEQUENCE: $\underline{L}$ SFCAL
OUTPUT: Printed, binary tape (files NPLS and SHADO).III-12


Figure III-10 Segment QOCAL Flow Diagrom


Figure III-11 Segment RCCAL Flow Diagram


Figure III-12 Segment RKCAL Flow Diagram


Figure III-13 Segment SFCAL Flow Diagram
B. SUBROUTINE AND FUNCTION DESCRIPTIONS - PROCESSOR LIBRARY

## ROUTINE NAME: ABSBEA

DESCRIPTION: This routine locates plotting beam at the absolute raster coordinate $(\mathrm{X}, \mathrm{Y})$ based on $0.0 \leq \mathrm{X}, \mathrm{Y} \leq 1.0$.

CALLING SEQUENCE: CALL ABSBEA (X, Y)
REFERENCES: NPMAIN, NPINFO, OPMAIN, OPINFO, PLGRID

## ROUTINE ANME: ADD

DESCRIPTION: This routine adds additional nodes/surfaces to the existing configuration (see BUILDC).

CALLING SEQUENCE: CALL ADD (BCSN)
BCSN - Left-justified, blank-filled block coordinate system name

REFERENCES: User call in the Operations Data block
FILES: NRAN

ROUTINE NAME: AQDATA
DESCRIPTION: This is a user-called routine to define control constants,
CALLING SEQUENCE: CALL AQDATA (IGBI, IGBS, RS, RA, RP)
IGBI - Step number containing gray-body IR
IGBS - Step number containing gray-body SOLAR
RS - Solar multiplier
RA - Albedo multiplier
$R P$ - Planetary multiplier
REFERENCES: ODPROG (user's operations data)

ROUTINE NAME: AQEND
DESCRIPTION: Routine for user logic before termination to AQCAL link.
REFERENCES: AQMAIN
ROUTINE NAME: AQMAIN
DESCRIPTION: This routine computes absorbed $Q$ data from direct incidentdata and solar/IR gray bodies and stores the data on file NTQ.
KEY VARIABLES: QAS - Absorbed solar array
QAR - Absorbed albedo array
QAP - Absorbed planetary array
GBIR - Gray-body IR array
GBSO - Gray-body solar array
QDS - Direct solar
SDR - Direct albedo
SDP - Direct planetary
REFERENCES: AQPROG
FILES: Reads NGBIR and NGBSO, NDI writes ..... NTQ
ROUTINE NAME: AQNCK
DESCRIPTION: This routine checks the node array on the data file with the active node array to determine if they contain the same configuration. If the configurations are different, AQNCK outputs both arrays and aborts, if both configura- tions are the same, it returns to the main program.
CALLING SEQUENCE: CALL AQNCK (ITEMP, N1)ITEMP - Array of node numbers from data file
N1 - Number of nodes
KEY VARIABLES: NODE - Node number array of actual configuration NNOD - Number of active nodes in configuration
REFERENCES: AQMAIN
ROUTINE NAME: AQPRE
DESCRIPTION: This is a user-called routine in the AQCAL link priorto any computations.
REFERENCES: AQMAIN

ROUTINE NAME: AQPROG
DESCRIPTION: This routine is generated by the preprocessor to call into
AQMAIN and the remainder of the link.

KEY VARIABLES: AQQDS - Long direct solar in array NNOD $A Q Q D R$ - Long direct albedo in array NNOD $A Q Q D P$ - Long direct planetary in array NNOD QAS - Long absorbed solar in array NNOD QAR - Long absorbed albedo in array NNOD QAR - Long absorbed planetary in array NNOD GBSO - Long gray-body solar in array NNOD GBIR - Long gray-body IR in array NNOD AQTEMP - Working storage area in array NNOD

ROUTINE NAME: BANNLB
DESCRIPTION: This routine writes the TRASYS processor banner on the output file.

REFERENCES: RDMAIN

ROUTINE NAME: BLDPLT
DESCRIPTION: This routine reads plot data from scratch disk 1 (NSCRI) and writes plot data in the proper format on output and plot disk IPLUNT. It also scales the $X$ and $Y$ values.

CALLING SEQUENCE: CALL BLDPLT (DATA, NV, NTIME, TIME)
DATA - Working storage array
NV - Number of lines per grid
NTIME - Number of data points per line
TIME (1, x) - Independent variable (time)
TIME (2, x) - Associated step number

## REFERENCES: PLLOAD

FILES: NSCR1 is defined in PLLOAD. IPLUNT is written in plot format

## ROUTINE NAME: BUILDC

DESCRIPTION: This routine activates and initializes the configuration 1 block coordinate system name per call. It also defines arrays NODE, AREA, EMISS, TRIR, TRSO, SRIR, and SRSO, and initializes configuration counters NN, NS, NSPEC, and NONLY.

CALLING SEQUENCE: CALL BUILDC (BCSN)/CALL ADD (BCSN)
BCSN - Left-justified, blank-filled block coordinate system name
INDXS - Array of random access record pointers to active surfaces defined by BUILDC/ADD

KEY VARIABLES: INDXN - Array of random access record pointers to active nodes defined by BUILDC/ADD
NN - Number of nodes plus shadower-only nodes
NS - Number of surfaces
NSPEC - Number of specular surfaces
NNOD - Number of nodes
NSPEC - Number of surfaces
NSURF - Number of surfaces
NONLY - Number of shadower surfaces
REFERENCES: User-called in the operations data block only

FILES: NRAN

ROUTINE NAME: CHGBLK
DESCRIPTION: This routine reads block coordinate system data (translations and rotations) from random access file NRAN, redefines them, rewrites them to the NRAN file, and flags the BCS directory that the BCS has been changed.

CALLING SEQUENCE: CALL CHGBLK (NAME, X, Y, Z, NROTX, NROTY, NROTZ, ROTX, ROTY, ROTZ)

| NAME - BCS name | NROTX - Rotation order of X |  |
| :--- | :--- | :--- |
| $X$ | - Translation X | NROTY - Rotation order of $Y$ |
| $Y$ | - Translation Y | NROTZ - Rotation order of $Z$ |
| $Z$ | - Translation $Z$ | ROTX - Rotation angle $X$ |
|  |  | ROTY - Rotation angle Y |
|  |  | ROTZ - Rotation angle $Z$ |

KEY VARIABLES: NBLKDR (1, I) - BCS name
(2, I) - Length of block
(3, I) - Random record number
(4, I) - Flag transform has been applied
REFERENCES: User-called in the Operations Data block

FILES: NRAN - Rewritten

```
ROUTINE NAME: CROSS
DESCRIPTION: This routine forms a vector cross-product of the form.
CROS = VECl x VEC2
CALLING SEQUENCE: CALL CROSS (VEC1, VEC2, CROS)
VEC1 (3) - X, Y, Z in array
VEC2 (3) - X, Y, Z in array
CROS (3) - X, Y, Z in array
REFERENCES: DILOC2
ROUTINE NAME: DICALP
DESCRIPTION: This routine computes the direct incident albedo radiation QDR (IN) and direct planetary radiation QDP (IN), forms an optimum elemental grid based on altitude and node positions/shadowing, and saves elemental planetary factors on disk and applies shadowing. It is the main control routine for computing albedo and planetary radiation.
\begin{tabular}{|c|c|c|}
\hline KEY VARIABLES : & \begin{tabular}{l}
SHADR \\
SHADP \\
SUMR \\
SUMP \\
QDR (IN) \\
QDP (IN) \\
ISFT \\
PLTYPE
\end{tabular} & \begin{tabular}{l}
- Shadow factor for albedo \\
- Shadow factor for planetary \\
- Elemental albedo factors \\
- Elemental planetary factors \\
- Complete incident albedo for Node IN \\
- Complete incident planetary for Node IN \\
- Flag to indicate shadow factor tape \\
- Flag to indicate to save or read planet elemental factors
\end{tabular} \\
\hline
\end{tabular}
```

REFERENCES: DITYPE

FILES: NPLS

```
ROUTINE NAME: DICALS
DESCRIPTION: This is the main controlling routine to compute direct
    incident fluxes. It forms an optimum elemental grid based
    on position and shadowing.
KEY VARIABLES: ISFT - Flag to indicate shadow factor tape
    SHADS - Shadow factor
    QDS (IN) - Incident solar flux for Node IN
REFERENCES: DIMAIN
FILES: None
ROUTINE NAME: DICCV
DESCRIPTION: This routine defines the position vector, given clock and cone angles and the vector magnitude.
CALLING SEQUENCE: CALL DICCV (VMAG, CL, CO, PVEC)
VMAG - Magnitude
CL - Clock angle in degrees
CO - Cone angle in degrees
PVEC(3) - Position vector
REFERENCES: DILOC2
ROUTINE NAME: DICOMB
DESCRIPTION: This routine performs a matrix multiplication of the form
\(A \cdot B=C\)
where
\(A, B\), and \(C\) are \(3 \times 3\) matrices.
CALLING SEQUENCE: CALL DICOMB (A, B, C)
A - \(3 x 3\) matrix
B - 3 x 3 matrix
C - Resultant 3 x 3 matrix
REFERENCES: DILOC, DILOC2
```

```
DESCRIPTION: This is a user routine to define compute flag or step
                numbers.
```

CALLING SEQUENCE: CALL DICOMP (IS, IA, IP)

```IS - Solar flag to compute, zero, and retrieve dataIA - Albedo flag to compute, zero, and retrieve data
IP - Planetary flag to compute, zero, and retrieve
                    data
```

REFERENCES: User-called routines in the Operations Data block
ROUTINE NAME: DIDCS
DESCRIPTION: This routine computes direction cosines, given the angles$X, Y$, and $Z$ and the order to perform the rotations.
CALLING SEQUENCE: CALL DIDCS (II, JJ, KK, PHI, PSI, OMI, TRAN)
II - Order of rotations (1st rotation)
JJ - Order of rotations (2nd rotation)

    KK - Order of rotations (3rd rotation)
    
    PHI - Rotation angle Z
    
    PSI - Rotation angle Y
    
    OMI - Rotation angle \(Z\)
    
    TRAN (3,3) - Resultant direction-cosine matrix
    REFERENCES: None
ROUTINE NAME: DIDENT
DESCRIPTION: This routine generates a 3 x 3 identity matrix in $A$.
CALLING SEQUENCE: CALL DIDENT (A)
$A-3 \times 3$ array with $i=j=1$, $i \neq j=0$
REFERENCES: DILOC

ROUTINE NAME: DIDT1
DESCRIPTION: This is a user-called routine to define the DI link parameters.

CALLING SEQUENCE: See users manual, Appendix D
REFERENCES: User-called routine in the Operations Data block

ROUTINE NAME: DIDTIS
DESCRIPTION: This is a user-called routine to define the DI link parameters.

CALLING SEQUENCE: See users manual, Appendix D
REFERENCES: User called routine in the Operations Data block

ROUTINE NAME: DIDT2
DESCRIPTION: This is a user-called routine to define the DI link parameters.

CALIING SEQUENCE: See users manual, Appendix D
REFERENCES: Operations Data, user-called

ROUTINE NAME: DIDT2S
DESCRIPTION: Short form call to define DI link parameters.
CALLING SEQUENCE: See users manual, Appendix D
REFERENCES: User-called routine in the Operations Data block

ROUTINE NAME: DIELEM
DESCRIPTION: Computes position and area vectors for all elements on a surface given the number of elements in each direction on a node.

CALLLING SEQUENCE: CALL DIELEM (ILP, DATA, TRAN, RX, RY, RZ, NTOT)
ILP - Type of geometric node
DATA(5) - Dimensions of node
TRAN(3,3) - Direction cosines of node
RX, RY, RZ - Translation vector
NTOT - Number of elements node is to be divided into

KEY VARIABLES: NEST , - Number of elements (maximum $=400$ )
SFPV (400, 3) - Node elemental position vector SFAV (400, 3) - Node elemental normal vector

REFERENCES: DLCALS, DICALP

ROUTINE NAME: DIELSL
DESCRIPTION: This routine computes the number of elements in two directions on a node to give square elements, given the total number required.

CALLING SEQUENCE: CALL DIELSL (NB, NG, ILP, DATA, NTOT)
NB - Computed number of elements in beta direction
NG - Computed number of elements in gamma direction
ILP - Surface type
DATA(5) - Nodal dimensions
NTOT - Total number of elements required
REFERENCES: DIELEM

ROUTINE NAME: DIEND
DESCRIPTION: This routine outputs final arrays of data (QDS - incident solar, the QDR - incident albedo, and QDP - incident planetary) to the NDI disk file for later reference. It end-files NRTO if a restart tape is desired and end-files NPLS if a PLTYPE (save) flag has been set.

CALLING SEQUENCE: CALL DIEND
REFERENCES: DIMAIN
FILES: Writes the NDI file and closes NPLS and NRTO

```
ROUTINE NAME: DIENDP
DESCRIPTION: This is a user-callable routine to intervene after completing
        albedo/planetary computations.
CALLING SEQUENCE: CALL DIENDP
REFERENCES: DIMAIN
ROUTINE NAME: DIENDS
DESCRIPTION: This is a user-callable routine to intervene after completing
        solar computations.
CALLING SEQUENCE: CALL DIENDS
REFERENCES: DIMAIN
ROUTINE NAME: DIGTST
DESCRIPTION: This routine determines if GN < GT < GX. If true, the
        function is set equal to 0; if false the value is set equal
        to 1.
CALLING SEQUENCE: A = DIGTST (GN, GX, GT)
    GN - Lower bound
    GX - Upper bound
    GT - Intermediate value
    A - O, 1 flag
REFERENCES: DISHAD
ROUTINE NAME: DIHEAD
DESCRIPTION: This routine outputs control parameters on request.
CALLING SEQUENCE: CALE DIHEAD
REFERENCES: DIMAIN
```

ROUTINE NAME: DILOCDESCRIPTION: This routine computes necessary orbital parameters frominput values for PERIOD, TRUEAN, TIMEPR, SUNPV, and variousorbital transformations.
CALLING SEQUENCE: CALL DILOC
KEY VARIABLES: PERIOD - Orbit period TRUEAN - True anomaly TIMEPR - Present time SUNPV - Sun position vector PLDC - Matrix of direction cosines to transform vectors in the planet-oriented VCS to the user-defined VCS
REFERENCES: DIMAIN
FILES: NOUT - System output fileNSCR3 - Scratch file
ROUTINE NAME: DILOC2
DESCRIPTION: This routine computes necessary orbital parameters, given the clock and cone angles to the sun and planet.
CALLING SEQUENCE: CALL DILOC2
KEY VARIABLES: SUNCL - Sun clock angle
SUNCO - Sun cone angle
PLCL - Planet clock angle
PLCO - Planet cone angle
IORBIT - Flag for type of orbit
REFERENCES: DILOC
FILES: NOUT - System output fileNSCR3 - Scratch file

ROUTINE NAME: DIMAIN
DESCRIPTION: This routine is the main driving logic for computing direct incident fluxes and includes the main computation loops.

CALLING SEQUENCE: CALL DIMAIN
KEY VARIABLES: XN - Sequence to node number currently being computed
REFERENCES: DIPROG (preprocessor-generated)

ROUTINE NAME: DIOUTP
DESCRIPTION: This routine allows the user to change the type or form of printed or punched data. It normally calls:

DIPRTP - To print the albedo/planetary fluxes DIPNHP - Tp punch the albedo/planetary fluxes DITPP - To write the albedo/planetary fluxes to the RTO tape in restart format

CALLING SEQUENCE: CALL DIOUTP
REFERENCES: DIMAIN

ROUTINE NAME: DIOUTS
DESCRIPTION: This routine allows the user to change the type or form of printed/punched data. It normally calls:

DIPRTS - To print the solar fluxes DIPNHS - To punch the solar fluxes DITPS - To write the solar fluxes to the RTO tape in the restart format

CALLING SEQUENCE: CALL DIOUTS
REFERENCES: DIMAIN

## ROUTINE NAME: DIPLNS

```
DESCRIPTION: This routine computes planet position and area vectors
        based on the orbit and accuracy parameters, and determines
        the emissive power of the planet element and view factor
        from the element to the sun.
CALLING SEQUENCE: CALL DIPLNS (NPEL)
    NPEL - Total number of desired elements on planet
KEY VARIABLES: PLPVT (400, 3) - Array of planet position vectors
        PLAVT (400, 3) - Array of planet-normal vectors (magnitude
        = area)
        ALBF (400) - Array of planet-to-sun view factors
        PLNF (400) ' - Array of planet-element emissive powers
REFERENCES: DICALP
```

ROUTINE NAME: DIPNHP
DESCRIPTION: This routine punches albedo and planetary fluxes in a format acceptable for restart if the DIPNCH flag has been set to 3HPUN.

CALLING SEQUENCE: CALL DIPNHP
KEY VARIABLES: DIPNHP - Flag to determine if punched cards are requested NODE - Array of node numbers QDR - Array of albedo values QDP - Array of planetary values

REFERENCES: DIOUTP

FILES: PUNCH

ROUTINE NAME: DIPNHS
DESCRIPTION: This routine punches solar fluxes in a restart format complete with proper header cards generated on the initial call to the routine.

CALLING SEQUENCE: CALL DIPNHS
KEY VARIABLES: IST - Flag to determine if this is the initial call

REFERENCES: DIOUTS
FILES: PUNCH
ROUTINE NAME: DIPREP
DESCRIPTION: This routine can be replaced by the user prior to computing albedo/planetary fluxes.
CALLING SEQUENCE: CALL DIPREP
REFERENCES: DTMAIN
ROUTINE NAME: DIPRES
DESCRIPTION: This routine can be replaced by the user prior to computing solar fluxes.
CALLING SEQUENCE: CALL DIPRES
REFERENCES: DIMAIN
ROUTINE NAME: DIPROG
DESCRIPTION: This is a preprocessor-generated routine that calls in maindriving logic to perform the direct-irradiation computations.
CALLING SEQUENCE: CALL DIPROG
REFERENCES: TRASYS
ROUTINE NAME: DIPRTP
DESCRIPTION: This routine prints albedo/planetary fluxes after each nodal computation. It may be overridden by the user if he desires to change the format.
CALLING SEQUENCE: CALL DIPRTP
KEY VARIABLES: INSHAD - Flag to determine if node is in the planet's shadow
ICRD - Restart card number
IN - Current node sequence number
REFERENCES: DIOUTP
ROUTINE NAME: DIPRTS
DESCRIPTION: This routine prints solar fluxes after each nodal computa- tion. It may be overridden by the user if he desires to change the output format.
CALLING SEQUENCE: CALL DIPRTS
KEY VARIABLES: INSHAD - Flag to determine if node is in the planet's shadow
IN - Current node sequence number
REFERENCES: DIOUTS
ROUTINE NAME: DIPSHP
DESCRIPTION: This routine determines possible shadowing surfaces betweenNode $I N$ and the planet element.
CALLING SEQUENCE: CALL DIPSHP (RADJ, RADI, POSJ, POSI, NST, JST, IN, JUMP)
RADJ - Radius of sphere enclosing surface node
RADI - Radius of sphere enclosing planet element
POSJ - Position vector of surface sphere
POSI - Position vector of planet element
NST - Number of shadowing surfaces
JST - Number of possible shadowers
IN - Node sequence number being computed
JUMP - Flag for using cylinder or cone technique
KEY VARIABLES: ISHAD - Array of possible shadowers JST - Number of possible shadowers
REFERENCES: DICALP

ROUTINE NAME: DIPSHS

```
DESCRIPTION: This routine determines possible shadowing surfaces between
    Node IN and the sun.
CALLING SEQUENCE: CALL DIPSHS (RADS, POS, SUNP, NSURF, NSHAD, IN)
    RADS - Radius of Node IN
    POS - Position vector of Node IN
    SUNP - Sun position vector
    NSURF - Number of shadowing surfaces
    NSHAD - Number of possible shadowing surfaces
    IN - Sequence number of node being computed
KEY VARIABLES: SHAO - Array of shadowing surfaces
REFERENCES: DICALS
```

ROUTINE NAME: DIRCOS

DESCRIPTION: This routine computes the direction cosines, given the rotation order and angles.

CALLING SEQUENCE: CALL DIRCOS (II, JJ, KK, PHI, PSI, OMI, TRAN)
II - Defines first rotation
JJ - Defines second rotation
KK - Defines third rotation
PHI - Rotation about $Z$ ( $Y$ to $X=$ positive)
PSI - Rotation about $Y$ ( $X$ to $Z=$ positive)
OMI - Rotation about $X$ ( $Y$ to $Z=$ positive)
TRAN(3,3) - Resultant direction cosine matrix
REFERENCES: ORIENT

DESCRIPTION: This routine defines the restart request arrays and determines the proper initial data based on the compute flags. It also determines if shadowing is computed directly or by a table lookup. If computed, DIRDRQ defines arrays with all-shadowing surface data.

CALLING SEQUENCE: CALL DIRDRQ

```
KEY VARIABLES: ISOLFL - Flag for computing, storing, or zeroing the
                                    solar fluxes
    IALBFL - Flag for computing, storing, or zeroing the
                        albedo fluxes
    IPLAFL - Flag for computing, storing, or zeroing the
    planetary fluxes
```

REFERENCES: DIMAIN
FILES: NDIR, NDI, NPLS
ROUTINE NAME: DIRPSP
DESCRIPTION: This routine computes the radius, area, and position
vector for the planet.
CALLING SEQUENCE: CALL DIRPSP
KEY VARIABLES: RADP - Radius of the planet
AREAPI - Area of visible portion of planet
POSP(3) - Position vector of planet
REFERENCES: DIMAIN
ROUTINE NAME: DIRTP
DESCRIPTION: This routine reads planet-element factors from a previously
stored DI call and defines the QDR and QDP arrays based on
known planet factors.
CALLING SEQUENCE: CALL DIRTP
REFERENCES: DITYPE
FILES: NPLS

```
ROUTINE NAME: DISB
DESCRIPTION: This routine computes the sigma and beta orbit angles,
                                    given the right ascension and declination to a star or sun.
CALLING SEQUENCE: CALL DISB (RA, DEC, BET, CIG)
RA - Right ascension angle
DEC - Declination angle
BET - Resultant beta angle
CIG - Resultant sigma angle
```

```
REFERENCES: ORBIT1
```

```
REFERENCES: ORBIT1
```


## ROUTINE NAME: DISFTP

```
DESCRIPTION: This routine loads shadow-factor tables into core from a disk file (NPLS) generated by a prior SFCAL call.
CALLING SEQUENCE: CALL DISFTP
REFERENCES: DIRDRQ
FILES: NPLS
ROUTINE NAME: DISHAD
DESCRIPTION: This routine computes elemental shadowing where all or none is shadowed. If surfaces are transparent, it reduces the shadower by the transmissivity of the surface.
CALLING SEQUENCE: CALL DISHAD (RX, RY, RZ, WE, WA, IN, I, NSS, RS)
RX - Position-vector component of node
RY - Position-vector component of node
RZ - Position-vector component of node
WE - Output IR component of shadowing \(0 \leq W E \leq 1\)
WA - Output solar component of shadowing \(0 \leq W A \leq 1\)
IN - Surface number containing node involved in shadowing
NSS - Number of possible shadowing surfaces
RS - Distance from center of node to heat source
REFERENCES: DICALS, DICALP
```

```
ROUTINE NAME: DITIME
DESCRIPTION: This routine computes the true anomaly from time-dependent
    orbital characteristics.
CALLING SEQUENCE: CALL DITIME (TIME, PER, ECC, TRU)
    TIME - Input orbital time
    PER - Orbital period
    ECC - Eccentricity of orbit
    TRU - Output true anomaly
REFERENCES: DILOC
ROUTINE NAME: DITPP
DESCRIPTION: This routine outputs albedo/planetary fluxes for a restart
        from tape if the DIPNCH 乍ag is set to 4HTAPE.
CALLING SEQUENCE: CALL DITPP
KEY VARIABLES: DIPNCH - Flag to determine if restart tape is to be
        written
REFERENCES: DIOUTP
FILES: NRTO
ROUTINE NAME: DITPS
DESCRIPTION: This routine outputs solar fluxes in a format acceptable for restart into the Flux Data block. If DIPNCH is set to 4HTAPE, it also generates an output tape.
CALLING SEQUENCE: CALL DITPS
REFERENCES: DIOUTS
FILES: NRTO
```


## ROUTINE NAME: DITRS 3

DESCRIPTION: This routine converts points from the surface coordinate system to the central coordinate system.

CALLING SEQUENCE: CALL DITRS 3 ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}, \mathrm{TRAN}$ )
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Output trans1ation vector, in CCS
A, B, C - Vector to be transformed
RX, RY, RZ - Vector in CCS
TRAN - Direction cosine matrix
REFERENCES: DIELEM

ROUTINE NAME: DITRS4
DESCRIPTION: This routine converts points in the central coordinate system to the surface coordinate system.

CALLING SEQUENCE: CALL DITRS 4 ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}, \mathrm{TRAN}$ )
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Output converted vector
A, B, C - Input point, in central system
RX, RY, RZ - Translation vector, in SCS
TRAN - Direction cosine matrix
REFERENCES: DILOC, DILOC2

ROUTINE NAME: DITTP
DESCRIPTION: See program listing for definition.

ROUTINE NAME: DITYPE
DESCRIPTION: This routine determines the type of computation and calls the proper routine.

CALLING SEQUENCE: CALL DITYPE
KEY VARIABLES: PLTYPE - Flag indicating that planetary data were previously defined,

REFERENCES: DIMAIN

ROUTINE NAME: DIVWPL

## DESCRIPTION: This routine computes elemental planetary factors without shadowing, and forms a sum over all the elements.

CALLING SEQUENCE: CALL DIVWPL
REFERENCES: DICALP

ROUTINE NAME: DIVWSN
DESCRIPTION: This routine computes elemental view factors to be summed without shadowing.

CALLING SEQUENCE: CALL DIVWSN

REFERENCES: DICALS

ROUTINE NAME: DUPNCK
DESCRIPTION: This is a user-called routine in the Operations Data block that determines if a configuration has duplicate node numbers. It aborts if duplicates are found.

CALLING SEQUENCE: CALL DUPNCK
REFERENCES: Operations Data block

ROUTINE NAME: DRCALS
DESCRIPTION: This is the main routine used in calculating the specularly reflected components of incident solar flux.

CALLING SEQUENCE: CALL DRCALS (MIRROR, KN, NSURFS)
MIRROR - Surface sequence number of current specular surface
KN - Index ranging over the number of specular surfaces and indicating the current specular surface
NSURFS - Total number of surfaces, plus images of surfaces, in MIRROR

REFERENCES: DRMAIN

```
ROUTINE NAME: DRELEM
DESCRIPTION: Given the number of elements in each direction on a
node, this routine calculates the area and position
vectors for each element.
CALLING SEQUENCE: CALL DRELEM (ILP, DATA, TRAN, RX, RY, RZ, NTOT)
    ILP - Surface type
    DATA - Nodal dimension parameters (ALPHA,
                                BMIN, BMAX, GMIN, and GMAX)
    TRAN - 3 x 3 matrix of direction cosines
    RX, RY, RZ - Translation vector
    INTOT - Total number of elements required on
        node
KEY VARIABLES: NEST - Counter for number of elements on a node
                                (maximum allowable = 100)
        SFAV - Array of elemental surface area vectors
        SFPV - Array of elemental position vectors
REFERENCES: DRCALS
ROUTINE NAME: DRELSL
DESCRIPTION: Given the total number of elements on a node, this routine calculates the number of elements in each direction so as to make them as nearly square as possible.
CALLING SEQUENCE: CALL DRELSL (NB, NG, ILP, DATA, NTOT)
```

```
NB - Number of elements in the beta direction
```

NB - Number of elements in the beta direction
NG - Number of elements in the gamma direction
NG - Number of elements in the gamma direction
ILP - Surface type
ILP - Surface type
DATA - Nodal dimension parameters (ALPHA, BMIN,
DATA - Nodal dimension parameters (ALPHA, BMIN,
BMAX, GMIN, and GMAX)
BMAX, GMIN, and GMAX)
NTOT - Minimum number of elements to be distributed
NTOT - Minimum number of elements to be distributed
over node

```
over node
```

REFERENCES: DRELEM
ROUTINE NAME: ..... DREND
DESCRIPTION: This routine writes direct incident fluxes QDS, QDR, and QDP to the NDI disk file (1abeled 6HIMAGEQ) to indicate that specular components are included.
CALLING SEQUENCE: CALL DREND
KEY VARIABLES: QDS - Incident solar fluxQDR - Incident albedo fluxQDP - Incident planetary flux
REFERENCES: DRMAIN
FILES: NDI - Disk file for storing direct incident fluxes
ROUTINE NAME: DRENDS
DESCRIPTION: This is a user routine that enables the user to inter- vene after calculating the incident solar fluxes.
CALLING SEQUENCE: CALL DRENDS
REFERENCES: DRMAIN
ROUTINE NAME: DRGTST
DESCRIPTION: This is an integer function routine that tests a given value, $G T$, to determine if it falls in the range $G N<G T<G X$. If true, the function value is 0 (zero); if false, the function value is 1 (one).
CALLING SEQUENCE: DRGTST (GN, GX, ..... GT)
GN - Lower bound
GX - Upper boundGT - Value to be tested
REFERENCES: DRSHAD
DESCRIPTION: This routine images the solar vector, as well as all shadowing surfaces, and writes the results on scratch file NSCR2 for each specular surface.
CALLING SEQUENCE: CALL DRIMAG (NST)

| NST | - Number of active surfaces |
| :---: | :---: |
| isSURFS | - Number of active surfaces plus number of images in any given specular surface |
| IFS, IKS, PR, | DSTR, DIMS, PSH, TSTR Shadowing surface description parameters |
| SUNPVT | - Solar vector |

REFERENCES: DRMAIN
FILES: NSCR2 - Scratch ..... file
ROUTINE NAME: DRMAIN
DESCRIPTION: This routine contains the main driving logic for computing direct incident fluxes, including specular components.
CALLING SEQUENCE: CALL DRMAIN
KEY VARIABLES: ISPEC - Array of surface sequence numbers for specular surfaces
SUNPVT - Solar vector
PLDC - Matrix of direction cosines to transform vectors in the planet-oriented VCS to the user-defined VCS
REFERENCES: DRPROG
FILES: NRAN - Random access ..... file
NSCR2 - Scratch fileNSCR3 - Scratch file

ROUTINE NAME: DROUTP
DESCRIPTION: This is a user routine that can be replaced to change the form of output for albedo and planetary incident fluxes. The normal call is to DRPRTP, which prints the albedo and planetary fluxes.

CALLING SEQUENCE: CALL DROUTP
REFERENCES: DRMAIN

ROUTINE NAME: DROUTS
DESCRIPTION: This is a user routine that can be replaced to change the form of output for incident solar fluxes. The normal call is to DRPRTS, which prints the solar fluxes.

CALLING SEQUENCE: CALL DROUTS
REFERENCES: DRMAIN

ROUTINE NAME: DRPOSI
DESCRIPTION: This routine transforms a vector in the ICS, BCS, or CCS to a vector in the SCS of a specular surface, negates the $Z$ component, and transforms it back into the ISC, BCS, or CCS.

CALLING SEQUENCE: CALL DRPOSI (X, Y, Z, TRAN)
X, Y, Z - Vector components in ICS, BCS, or CCS
TRAN - Matrix of direction cosines
KEY VARIABLES: A, B, C - Vector components in the SCS
REFERENCES: DRIMAG

```
ROUTINE NAME: DRPRTP
DESCRIPTION: This routine prints albedo and planetary incident
    fluxes after each nodal computation. The user can
    override this routine to change the output format if
    he desires.
CALLING SEQUENCE: CALL DRPRTP
KEY VARIABLES: IN - Current node sequence number
    INSHAD - Flag to indicate if vehicle is in planet
    shadow
REFERENCES: DROUTP
FILES: NOUT - System output file
ROUTINE NAME: DRPRTS
DESCRIPTION: This routine prints the solar incident flux after each nodal computation. The user can override this routine to change the output format if he desires.
CALLING SEQUENCE: CALL DRPRTS
KEY VARIABLES: IN - Current node sequence number INSHAD - Flag to indicate if vehicle is in planet shadow
REFERENCES: DROUTS
FILES: NOUT - System output file
```

ROUTINE NAME: DRPSHS
DESCRIPTION: This routine determines all possible shadowing surfacesbetween Node IN and the image of the sun in specularsurface MIRROR.
CALLING SEQUENCE: CALL DRPSHS (RADS, POS, SUNP, NSURF, NSS, NSHAD, IN, MIRROR)
RADS - Radius of sphere enclosing Node IN
POS - Position vector of enclosing sphere
SUNP - Image of solar vector in specular surfaceMIRROR
NSURF - Total number of shadowing surfaces
NSS - Total number of shadowing surfaces plus imagesof shadowing surfaces in MIRRORNSHAD - Number of possible shadowing surfaces
IN - Sequence number of current node
MIRROR - Surface sequence number of current specular surface
REFERENCES: DRCALS
ROUTINE NAME: DRRDRQ
DESCRIPTION: This routine initializes the direct incident flux arrays QDS, QDR, and QDP to the flux values calculated by segment DICAL.
CALLING SEQUENCE: CALL DRRDRQ
KEY VARIABLES: QDS - Incident solar flux arrayQDR - Incident albedo flux arrayQDP - Indicent planetary flux array
REFERENCES: DRMAIN
FILES: NOUT - System output file
NDI - Disk file for storing direct incident fluxes

## ROUTINE NAME: DRSHAD

| DESCRIPTION: $\begin{aligned} \text { This } \\ \text { wher } \\ \text { shad }\end{aligned}$ | routine calculates the elemental shadowing, e an element is either completely shadowed or not owed at a11. Shadowing is reduced by the transmisty for semitransparent shadowing surfaces. |
| :---: | :---: |
| CALLING SEQUENCE: | CALL DRSHAD (RX, RY, RZ, WE, WA, IN, I, NSS, RS, MIRROR) |
|  | RX, RY, RZ - Components of solar position vector <br> WE, WA - Elemental shadowing factors for IR and solar fluxes |
|  | IN - Surface sequence number |
|  | I - Sequence number of element |
|  | NSS - Number of possible shadowing surfaces |
|  | RS - Square of the magnitude of the solar |
|  | MIRROR - Sequence number of current specular surface |

REFERENCES: DRCALS

ROUTINE NAME: DRTRS3
DESCRIPTION: This routine transforms points in an SCS to points in the ICS, BCS, or CCS.

CALLING SEQUENCE: CALL DRTRS3 (X, Y, Z, A, B, C, RX, RY, RZ, TRAN)
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Coordinates of a point in the ICS, BCS or CCS
A, B, C - Coordinates of the point in the SCS RX, RY, RZ - Components of the SCS origin position vector in the ICS, BCS, or CCS
TRAN - Matrix of direction cosines
REFERENCES: DRELEM, DRIMAG
ROUTINE NAME: DRTRS4
DESCRIPTION: This routine transforms points in the ICS, BCS, or CCSto points in an SCS.
CALLING SEQUENCE: CALL DRTRS4 (X, Y, Z, A, B, C, RX, RY, RZ, TRAN)
$X, Y, Z-C o o r d i n a t e s ~ o f ~ a ~ p o i n t ~ i n ~ t h e ~ S C S ~$$A, B, C$ - Coordinates of the point in the ICS,BCS, or CCS
RX, RY, RZ - Components of the ICS, BCS, or CCSorigin position vector in the SCS
TRAN - Matrix of direction cosines
REFERENCES: DRIMAG
ROUTINE NAME: DRVWSN
DESCRIPTION: This routine calculates the unshadowed form factor from a node to the sun.
CALLING SEQUENCE: CALL DRVWSN (AREASF, NOT, FRACT)AREASF - Surface area of current node
NOT - Flag to indicate whether node can "see"
the sun
$=0$ Can see
$=1$ Cannot see
FRACT - Unshadowed node-to-sun form factor
REFERENCES: DRCALS
ROUTINE NAME: ..... EARTHD
DESCRIPTION: This routine defines all Earth-oriented constants needed by the DI link.
CALLING SEQUENCE: CALL EARTHD
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: ENDTP
DESCRIPTION: This routine writes a pseudo end file on the BCD unit and informs the user as to type of data the unit contains.
CALLING SEQUENCE: CALL ENDTP (NTYPE)NTYPE - Flag to indicate type of end message to write
REFERENCES: RKMAIN, QOSAVE
ROUTINE NAME: FFAREA
DESCRIPTION: This routine computes the area of a surface, given the surface properties.
CALLING SEQUENCE: FUNCTION FFAREA (ILP, ALPH, BMIN, BMAX, GMIN, GMAX)ILP - Surface typeALPH, BMIN, BMAX, GMIN, GMAX - Surface dimensions
REFERENCES: FFEXPN
ROUTINE NAME: FFCALDESCRIPTION: This is the main computation routine for computing theform factor. It determines the proper number of elementsand computes position area vectors and the final formfactor, including shadowing.
CALLING SEQUENCE: CALL FFCAL
REFERENCES: FFPRE
ROUTINE NAME: FFDATA
DESCRIPTION: This is a user-callable routine to define the controlvariables in the FF link.CALLING SEQUENCE: CALL FFDATA (ACC, ACCS, RNOSH, RATL, RMIN, PRNT,PNCH )See Users Manual, Appendix D, for definition
REFERENCES: Operations Data block
ROUTINE NAME: FFELEM
DESCRIPTION: This routine computes elemental position and area vectors,given the number required in each nodal direction.
CALLING SEQUENCE: CALL FFELEM (NB, NG, ILP, IC, DATA, POS, ARA,TRAN, RX, RY, RZ)

- Number of elements in the betadirection
NG - Number of elements in the gamadirection
ILP - Surface type
IC - Position to start storing element inthe POS and ARA arrays
DATA(5) - Array of node dimensions
POS (500, 3) - Array of element position vectorsARA (500, 3) - Array of normal vectors (magnitude\& area)TRAN (3, 3) - Direction cosine matrix of nodeRX, RY, RZ - Position vector of center of node
REFERENCES: FFCAL, FFEXPN

ROUTINE NAME: FFELSL


## REFERENCES: FFCAL, FFEXPN

ROUTINE NAME: FFEND
DESCRIPTION: This routine is called prior to the termination of the FF link to write the end-of-files to the internal disk units and restart files.

CALLING SEQUENCE: CALL FFEND
REFERENCES: FFMAIN
FILES: NFF, NRTO

ROUTINE NAME: FFESUM
DESCRIPTION: This routine outputs form-factor sums for all nodes.
CALLING SEQUENCE: CALL FFESUM
KEY VARIABLES: SUM - Array of form-factor sums
REFERENCES: FFEND
ROUTINE NAME: ..... FFEXPN
DESCRIPTION: This routine computes a node-pair form factor with shadowing, using the subnode technique. Logic is entered when the separation distance along the node varies by more than FFRATL.
CALLING SEQUENCE: CALL FFEXPN (POSI, ARAI, FE, FA, RATI, RATJ, JFLAG, JST, NEI, NEJ, NSUR, LADDR)
POSI - Position vector, storing elements on node $i$ and $j$
ARAI - Area vector, storing elements on node $i$ and $j$
FE - Resultant IR form factor
RATI - Ratio of rate of change along node $i$ RATJ - Ratio of rate of change along node $j$ JFLAG - Flag indicating that maximum number of elements has been exceeded
JST - Number of possible shadowers
NEI - Average number of elements on node $j$ NSUR - Average number of shadowing surfaces IADDR - Maximum time return sequence (not used)
REFERENCES: FFCAL
ROUTINE NAME: FFGTST
DESCRIPTION: This routine determines if gamma falls in allowable ranges and sets the functional value to 1 if it does and to 0 if it doesn't.
CALLING SEQUENCE: FFGTST (GN, GX, GT)
GN - Minimum gamma
GX - Maximum gamma
GT - Gamma in question
REFERENCES FFSHD
ROUTINE NAME: FFHEAD
DESCRIPTION: This routine prints FF control values in summary form on an output file.
CALLING SEQUENCE: ..... CALL FFHEAD
REFERENCES: FFMAIN
ROUTINE NAME: FFMAIN
DESCRIPTION: This is the main controlling logic in the FF link. It checks for restart data and directs the logic flow.
CALLING SEQUENCE: CALL FFMAIN
REFERENCES: FFPROG
ROUTINE NAME: FFMINR
DESCRIPTION: This routine determines if the computed form factor is less than the control value FFMIN. If less, it redefines the FFVALS and FFVALI array elements to zero.
CALLING SEQUENCE: CALL FFMINR
REFERENCES: FFOUT
ROUTINE NAME: FFOUT
DESCRIPTION: This is a user-replaceable routine calling for print (as a minimum) and punch options.
CALLING SEQUENCE: CALL FFOUT
REFERENCES: FFMAIN
ROUTINE NAME: ..... FFPCH
DESCRIPTION: This routine punches restart form factors if the FFPNCH option is used. The restart form factors are punched in a format acceptable to the Header Form Factor Data block.
CALLING SEQUENCE: CALL FFPCH
REFERENCES: FFOUT
ROUTINE NAME: FFPRE
DESCRIPTION: This is a user-definable routine to determine the typeof computation. The program normally calls FFCAL touse a finite-element technique.
CALLING SEQUENCE: CALL FFPRE
REFERENCES: FFMAIN
ROUTINE NAME: FFPROG
DESCRIPTION: This is a preprocessor-generated routine that definesnecessary common blocks and calls into the main logic.
CALLING SEQUENCE: CALL FFPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: FFPRT
DESCRIPTION: This routine prints nonzero computed and predefinedform factors on an output file.
CALLING SEQUENCE: CALL FFPRT
REFERENCES: FFOUT
ROUTINE NAME: FFPSHD
DESCRIPTION: This routine computes the number of possible shadowing surfaces between node pairs.
CALLING SEQUENCE: CALL FFPSHD (RADJ, RADI, POSJ, POSI, NST, JST,IN, JN)RADJ - Radius of sphere enclosing node $j$RADI - Radius of sphere enclosing node iPOSI - Position vector to center of sphereenclosing node i
POSJ - Position vector to center of sphereenclosing node i
NST - Number of shadowing surfaces
JST - Number of possible shadowersIN - Sequence numbers of node $i$JN - Sequence numbers of node $j$
REFERENCES: FFCAL, FFEXPN
ROUTINE NAME: FFRDIN
DESCRIPTION: This routine determines if there is a form factor re- start, and defines the shadowing data.
CALLING SEQUENCE: CALL FFRDIN (ISHDO)
ISHDO - Flag indicating shadower-only surfaces
l - Shadower-only surfaces
0 - Not shadower-only surfaces
REFERENCES: FFMAIN
ROUTINE NAME: FFRDRQ
DESCRIPTION: This routine reads the restart file of form factors and defines known values, or sets a flag to compute values for the current row.
CALLING SEQUENCE: CALL FFRDRQ
IEOFFR - End-of-file flag for the NFFR unit FFVALI - Array of values/flags to compute IR FFVALS - Array of values/flags to compute solar
REFERENCES: FFMAIN
FILES: NFFR - Read
ROUTINE NAME: ..... FFROW
DESCRIPTION: This routine outputs to internal file NFF a row of form factors to be used in matrix form by other 1inks.
CALLING SEQUENCE: CALL FFROW
REFERENCES: FFMAIN
FILES: Writes ..... NFF
ROUTINE NAME: FFRPSN
DESCRIPTION: Given the nodal dimensions, this routine computes the radius of an encompassing sphere and the position vector to the center of the sphere.
CALLING SEQUENCE: CALL FFRPSN (RADN, POSN, ILK, DATA, BETA, GAMMA, DB, DG)
RADN - Computed radius of sphere enclosing nodePOSN(3) - Vector to center of nodeILK - Surface typeDATA(S) - Dimensions of sphereBETA - Length to center along beta directionGAMMA - Length to center along gamma directionDB - Absolute value of deviation from gammaDG - Absolute value of deviation from beta
REFERENCES: FFEXPN
ROUTINE NAME: FFRSUM
DESCRIPTION: This routine is called after completing each row, to output the FF sum and time.
CALLING SEQUENCE: CALL FFRSUM
REFERENCES: FFROW

```
ROUTINE NAME: FFSHD
DESCRIPTION: This routine computes elemental shadowing between node
IN and node JN. An element is either completely shadowed
or not shadowed at all. Shadowing is reduced by the
transmissivity for semitransparent shadowing surfaces.
CALLING SEQUENCE: CALL FFSHD (ILKI, RX, RY, RZ, POSI, WE, WA, IST, IN,
    JN, I, NSS, RS)
    ILKI - Type of surface for IN
    RX, RY, RZ - Components of vector from element on
    node \(i\) to element on node \(j\)
    POSI - Array of elemental position vectors
    WE, WA - Elemental shadowing factors for \(I R\) and
        solar form factors
    IN, JN - Surface sequence numbers
    I - Element sequence number
    NSS - Number of possible shadowers
    RS - Square of the magnitude of the element-
        to-element connecting vector \(\left(R X^{2}+R Y^{2}\right.\)
        \(+R Z^{2}\) )
```

REFERENCES: FFCAL, FFEXPN

ROUTINE NAME: FFTMCK
DESCRIPTION: This routine calculates the time remaining in the run and compares it with the estimated time for the next calculation. It there is insufficient time remaining, the run is aborted.

CALLING SEQUENCE: CALL FFTMCK (IADDR, MAXLFT)
IADDR - Not used
MAXLET - Estimated time required for next calculation
$M$ - Time remaining in run

REFERENCES: FFCAL, FFEXPN

## ROUTINE NAME: FFTP

## DESCRIPTION: This routine uses the CMERG (BCD) file to write to the restart output tape single form factors in a form acceptable to Header Form Factor Data block. It also checks the FFPNCH flag and returns if the value is not 4 HTAPE.

## CALLING SEQUENCE: CALL FFTP

REFERENCES: FFOUT

ROUTINE NAME: FFTRS 3

DESCRIPTION: This routine transforms a point in an SCS to points in the ICS, BCS, and CCS.

CALLING SEQUENCE: CALL FFTRS3 (X, Y, Z, A, B, C, RX, RY, RZ, TRAN)

X, Y, Z - Coordinates of a point in the ICS, BCS, or CCS
A, B, C - Coordinates of the point in the SCS
RX, RY, RZ - Components of the SCS origin position vector in the ICS, BCS, or CCS
TRAN - Matrix of direction cosines

REFERENCES: FFELEM

DESCRIPTION: This routine calculates the unshadowed form factor between node IN and node JN. It also calculates RATI and RATJ, which will later be compared with the user-input variable, FFRATL, to see if nodes should be expanded into subnodes for better accuracy.

CALLING SEQUENCE: CALL FFVIEW (NTI, NTJ, POSI, ARAI, NTOTI, NTOTJ, ARI, ARJ, NOT, FRACT, RATI, RATJ)

NTI - Initial number of elements on node IN
NTJ - Total initial number of elements on node IN and node JN
POSI - Array of elemental position vector
ARAI - Array of elemental area vectors
NTOTI, NTOTJ - Number of elements required on node IN and node JN
ARI, ARJ - Areas of node IN and node JN
NOT - Flag to indicate whether node IN can see node JN
$=0$ Can see
= 1 Cannot see
FRACT - Unshadowed node-to-node form factor
RATI, RATJ - Ratios of indicated maximum elements required in NTOTI and NTOTJ
ROUTINE NAME: FFVWT
DESCRIPTION: This routine calculates unshadowed form factors betweensubnodes and determines the number of elements requiredbased on a weighted-average criterion.
CALL FFVWT (NTI, NTJ, POSI, ARAI, NTOTI, NTOTJ, ARI,
ARJ, NTOTI, NTOTJ, FRACT)
NTI - Number of elements on subnode of node IN
NTJ - Total number of elements on subnode IN
and subnode JN
POSI - Array of elemental position vectors
ARAI - Array of elemental area vectors
NTOTI, NTOTJ - Number of elements required on subnodes
of node IN and node JN
ARI, ARJ - Areas of subnodes
NOT - Flag to indicate whether subnode IN can
"see" subnode IN
$=0$ Can see
$=1$ Cannot see
FRACT - Unshadowed subnode-to-subnode form factor
REFERENCES: FFEXPN

## ROUTINE NAME: FINDST

DESCRIPTION: Given the unit, step number, label 1 , and label 2, this routine positions the file at the proper point or returns an end-of-file flag indicating it was unable to find the data.
CALLING SEQUENCE: CALL FINDST (NUNIT, ISTEP, LAB1, LAB2, IEOF)
NUNIT - Unit to be searched
ISTEP - Program step number needed
LAB1 - Subidentifier 1
LAB2 - Subidentifier 2
IEOF - Flag indicating if data were found $=2 \mathrm{HNO}$, No end-of-file encountered (found data)
$=$ 3HYES End-of-file found (no data)
REFERENCES: FFRDIN, SFMAIN, SFRDIN, DIRDRQ, GBMAIN, RKMAIN, AQMAIN, QOMAIN, QOCMBN, PLLOAD, FNDFLP, RCMAIN
FILES: A11 internal data files
ROUTINE NAME: FLIP
DESCRIPTION: Given a working storage area, this routine flips a matrixin row order on unit NSI to a matrix in column order andwrites it to unit NS2.
CALLING SEQUENCE: CALL FLIP (DATA, NV, NTIME, ICOL, NSI, NS2)
DATA - Working storage area
NV - Number of rows stored at one time
NTIME - Number of rows
ICOL - Number of columns
NSI - Unit containing the input matrixNS2 - Unit containing the output matrix
REFERENCES: FNDFLP
ROUTINE NAME: FNDEXP
DESCRIPTION: Given a floating-point number, this routine convertsit to scientific notation.
CALLING SEQUENCE: CALL FNDEXP (X, BASE, IEXP)X - Floating-point variableBASE - $0.0 \leq \mathrm{BASE} \leq 1.0$
IEXP - Exponent such that $X=$ BASE**IEXP
REFERENCES: QOSBCD, QOAVGS

```
ROUTINE NAME: FNDFLP
DESCRIPTION: This routine reads the overall incident solar, albedo,
    planetary, and total fluxes from a disk generated by
    AQCAL or DICAL and stores them on a scratch file by
    sequential orbit points. It also builds titles as a
    function of user input data.
CALLING SEQUENCE: CALL FNDFLP (DATA, SOL, ALB, PLA, TOT, NV, LCl, LC2,
LC3, NTIME, ITIME, TIME, NUNIT)
DATA - Working storage area where DATA (1) = SOL (1)
SOL - Working array DATA (NTIME+1) = ALB(1)
ALB - Working array DATA (2NTIME+1) = PLA(1)
PLA - Working array DATA (3NTIME+1) = TOT(1)
TOT - Working array
NV -
LC1 - First contro1 character - I (incident) or A (absorbed)
LC2 - Second control character - F (flux) or R (rate)
LC3 - Third control character - S (solar), A (albedo),
                                P (planetary), T (total) and ALL (all)
NTIME - Number of orbit positions
ITIME, TIME - Doublet array containing time and step number
NUNIT - Plot output unit
```

REFERENCES: PLLOAD

FILES: NSCR1, NSCR2

ROUTINE NAME: FRAME

DESCRIPTION: This is a plotting routine to advance to a new frame.

CALLING SEQUENCE: CALL FRAME

REFERENCES: NPMAIN, OPMAIN, PLDRIV
ROUTINE NAME: FRAMEC
DESCRIPTION: This routine determines the number of frames of plot data generated to this point.
CALLING SEQUENCE: CALL FRAMEC (N, I)N - Number of framesI - Dayfile message flag$=0$ Do not print dayfile message
$=1$ Print dayfile message
REFERENCES: NPMAIN, OPMAIN
ROUTINE NAME: GBDATA
DESCRIPTION: This is a user-called routine to define the step number and type of gray-bodies to compute.
CALLING SEQUENCE: CALL GBDATA (NSFF, NBAND)NSFF - Step number containing form factorsWBAND - Waveband to compute gray-bodies for$2 \mathrm{HIR}, 3 \mathrm{HSOL}$, and 4 HBOTH
REFERENCES: Operations Data block
ROUTINE NAME: GBEND
DESCRIPTION: This routine can be replaced by the user to intervene after completion of the gray-body link.
CALLING SEQUENCE: CALL GBEND
REFERENCES: GBMAIN
ROUTINE NAME: GBHEAD
DESCRIPTION: This routine prints the input parameters defined by the user, together with input options.
CALLING SEQUENCE: CALL GBHEAD
REFERENCES: GBMAIN
ROUTINE NAME: GBINV
DESCRIPTION: This routine computes the inverse of the matrix storedin core or in large blocks on disk.
CALLING SEQUENCE: . CALL GBINV (A, B)
A - Working block 1
B - Working block 2
REFERENCES: GBSCFA
ROUTINE NAME: GBMAIN
DESCRIPTION: This is the main controlling routine in the gray-body link that directs main control and defines the block size.
CALLING SEQUENCE: CALL GBMAIN
REFERENCES: GBPROG
ROUTINE NAME: GBPRE
DESCRIPTION: This routine can be replaced by the user to intervene prior to the call to the invert routine.
CALLING SEQUENCE: CALL GBPRE
REFERENCES: GBMAIN
ROUTINE NAME: ..... GBPROG
DESCRIPTION: This is a preprocessor-generated routine that defines the necessary commons and calls into the main gray-body logic.
CALLING SEQUENCE: CALL GBPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: GBSCFA
DESCRIPTION: Given the set of form factors, this routine blocksthe matrix and applies the proper factors to generatea positive definite matrix, and guarantees that theinverse exists.
CALLING SEQUENCE: CALL GBSCFA
REFERENCES: GBMAIN
FILES: Reads NFF, writes NSCR1
ROUTINE NAME: IACT
DESCRIPTION: This routine returns the number of elements in anarray defined in the array data block. The integercount of the array is stored in the zeroth cell ofthe array.
CALLING SEQUENCE: Function IACT (IA)
LA - First data word of array
REFERENCES: NPDATA, OPDATA
ROUTINE NAME: INIT28
DESCRIPTION: This routine initializes the plot link and sets upthe plot file.
CALLING SEQUENCE: CALL INIT28
REFERENCES: PLMAIN, NPMAIN, OPMAIN
ROUTINE NAME: INTOD
DESCRIPTION: This routine sets up the NTITLE array used in pageheadings and is called each time the operations dataare called after a link call.
CALLING SEQUENCE: CALL INTOD
REFERENCES: OPPROG (generated by preprocessor)
ROUTINE NAME: JUPIDD
DESCRIPTION: This routine sets up the planet parameters concerningthe planet Jupiter.
CALLING SEQUENCE: CALL JUPIDD
KEY VARIABLES: PRAD - Planet radius SOL - Solar constant

    PALB - Planet albedo factor
    
    WDS. - Planet darkside temperature
    
    WSS - Planet sun side temperature
    
    GRAV - Gravitational constant
    REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: LINE
DESCRIPTION: This routine connects the points $P_{1}$ and $P_{2}$ defined by $\mathrm{P}_{1}=\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right), \mathrm{P}_{2}=\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)$
CALLING SEQUENCE: CALL LINE (X1, Y1, X2, Y2)
$\mathrm{X} 1, \mathrm{Y} 1$ - Coordinates of point 1
$\mathrm{X} 2, \mathrm{Y} 2$ - Coordinates of point 2
REFERENCES: NPFPLT, OPFPLT, PLGRID

ROUTINE NAME: LINEOP
DESCRIPTION: This routine defines the intensity of the lines drawn by the plot routines.

CALLING SEQUENCE: CALL LINEOP (DUM, INTEN)
DUM - Dummy parameter
INTEN - Variable defining intensity
REFERENCES: NPSCAL, OPSCAL

ROUTINE NAME: LINES
DESCRIPTION: This routine connects the arrays of $X$ and $Y$ with a line.

CALLING SEQUENCE: CALL LINES (X, Y, N)
X - Array of X
Y - Array of Y
N - Number of points in $X$ and $Y$ arrays

REFERENCES: PLDRIV

ROUTINE NAME: MAP
DESCRIPTION: This routine maps the plot object space into subject space.

CALLING SEQUENCE: CALL MAP (XMIN, YMIN, XMAX, YMAX, XMI, XMA, YMI, YMA)

XMIN, YMIN, XMAX, YMAX - Corner points of object space XMI, XMA, YMI, YMA - New corner points of subject space

REFERENCES: NPSCAL, NPINFO, OPSCAL, OPINFO, PLGRID
ROUTINE NAME: ..... MARSD
DESCRIPTION: This routine defines the planet parameters concerning theplanet Mars.
CALLING SEQUENCE: CALL MARSD
KEY VARIABLES: PRAD - Planet radiusSOL - Solar ConstantPALB - Planet albedo factorWDS - Planet darkside temperatureWSS - Planet sun side temperatureGRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: MERCUD
DESCRIPTION: This routine sets up the planet parameters concerning the planet Mercury.
CALLING SEQUENCE: CALL MERCUD
KEY VARIABLES: PRAD - Planet radiusSOL - Solar constantPALB - Planet albedo factorWDS - Darkside temperatureWSS - Sun side temperatureGRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: MOOND
DESCRIPTION: This routine defines the planet parameters concerningthe Moon.
CALLING SEQUENCE: CALL MOOND
KEY VARIABLES: PRAD - Planet radius
SOL - Solar constantPALB - Albedo factor
WDS - Darkside temperatureWSS - Sun side temperatureGRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2

ROUTINE NAME: NDATA
DESCRTPTION: This is a user routine to preset the node plot optional parameters.

CALLING SEQUENCE: CALL NDATA (NV, IVU, SCL, ISELN, ITIT, NPHI, NPSI, NOMI, PHI, PSI, OMI)

KEY VARIABLES: See users manual Appendix D.
REFERENCES: User-defined call in the Operations Data block

ROUTINE NAME: NDATAS
DESCRIPTION: This routine is the short-form, user-callable routine to define the node plotter options the user wishes to use.

CALLING SEQUENCE: CALL NDATAS (NV, IVU, SCL)
NV - Plot frame number ( $1 \leq N V \leq 6$ )
IVU - Plot view type (X, Y, $Z, 3-\mathrm{D}$ gen)
SU - Plot scale number
REFERENCES: User-called in the Operations Data block.

ROUTINE NAME: NEPTD
DESCRIPTION: This routine defines the planet parameters concerning the planet Neptune.

CALLING SEQUENCE: CALL NEPTD
KEY VARIABLES: PRAD - Planet radius SOL - Solar constant
PALB - Planet albedo factor
WDS - Darkside temperature
WSS - Sun side temperature GRAV - Gravitational constant

REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: NPAXES
DESCRIPTION: This routine defines the size and orientation of all characters to be small and horizonal, and draws and labels the CCS axes.
CALLING SEQUENCE: CALL NPAXES
KEY VARIABLES: VROT (3, 3) - Direction cosine matrix converting points in the SCS to the CCS
REFERENCES: NPMAIN
ROUTINE NAME: ..... NPCONE
DESCRIPTION: This routine, given the surface/node dimensions in the SCS generates the portion of the cone defined, converts it to the CCS, and plots the results.
CALLING SEQUENCE: CALL NPCONE
REFERENCES: NPMAIN
ROUTINE NAME: NPCONV
DESCRIPTION: This routine converts the plot control data from commonand checks for errors. If no data are defined in common,it sets up the proper default parameters.
CALLING SEQUENCE: CALL NPCONV (NV, NNP, NEND)NV - Plot view frame numberNNP - Number of nodes to be selectively plottedNEND - End flag determining if more plots are needed
REFERENCES: NPMAIN
ROUTINE NAME: NPCYLO
DESCRIPTION: This routine, given the surface/node dimensions in the SCS, determines the proper plot calls to draw a cylinder.
CALLING SEQUENCE: CALL NPCYLO
REFERENCES: NPMAIN

ROUTINE NAME: NPDISC
DESCRIPTION: This routine, given the surface/node dimensions in the SCS, determines the proper plot calls to draw a disk.

CALLING SEQUENCE: CALL NPDISC
REFERENCES: NPMAIN

ROUTINE NAME: NPDOTL
DESCRIPTION: This routine connects $P 1$ and $P 2$ with a dotted line.
CALLING SEQUENCE: CALL NPDOTL (X1, Y1, 21, X2, Y2, Z2)
X1, Y1, Z1 - Coordinates of Pl
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2$ - Coordinates of P 2
REFERENCES: NPCONE, NPCYLO, NPPARA, NPSPHE

ROUTINE NAME: NPFPLT
DESCRIPTION: This routine directs the actions of the pen/beam plotter. I is either even or odd, or negative or positive.

CALLING SEQUENCE: CALL NPFPLT (I, X, Y)
I - Plotting designator

- Even, [Draw to (X, Y)]

0 - Odd, [Position at (X, Y)]

- Positive, (generates new origin)
- Negative, (keeps same origin)
$X, Y$ - Coordinates of new point
REFERENCES: NPAXES, NPCONE, NPCYLO, NPDOTL, NPTPLT, NPDISC, NPPARA, NPRECT, NPSPHE, NPTRAP
ROUTINE NAME: NPINFO
DESCRIPTION: This routine labels the plot.
CALLING SEQUENCE: CALL NPINFO (NV, KEND, KCC)NV - View numberKEND - $=0$ Good plot$\neq 0$ Error in plotKCC - Internal view number
REFERENCES: NPMAIN
ROUTINE NAME: NPMAIN
DESCRIPTION: This routine is the main driving logic to control the node plot link.
CALLING SEQUENCE: CALL NPMAIN
REFERENCES: NPPROG (preprocessor-generated)
ROUTINE NAME: NPPARA
DESCRIPTION: This routine, given the node dimensions in the SCS, generates the plot calls necessary to draw a paraboloid.
CALLING SEQUENCE: CALL NPPARA
REFERENCES: NPMAIN
ROUTINE NAME: NPPROG
DESCRIPTION: This routine is generated by the preprocessor. It definesthe necessary labeled common blocks and calls into themain driving logic for the node plotter.
CALLING SEQUENCE: CALL NPMAIN
REFERENCES: TRASYS (root segment)
ROUTINE NAME: NPRECTDESCRIPTION: This routine, given the nodal dimensions, generates theplot calls to draw a rectangle.
CALLING SEQUENCE: CALL NPRECT
REFERENCES: NPMAIN
ROUTINE NAME: NPRIDA
DESCRIPTION: This routine is unique to the Univac version, anddefines a system-labeled common block with a user nameand location for labeling the plots. An initializationroutine is called from this routine to initialize theplot.
CALLING SEQUENCE: CALL NPRIDA (IARRAY)
IARRAY (1) - Name (word 1)
IARRAY (2) - Name (word 2)
IARRAY (3) - User mail number
IARRAY (4) - Extension
IARRAY (5) - Blank
IARRAY (6) - Project
REFERENCES: User-callable routine from the Operations Data block
ROUTINE NAME: NPRIDS
DESCRIPTION: This routine is unique to the Univac version and isused to define the plots so they contain a name, mailaddress, project, and extension by defining a system-labeled common.
CALLING SEQUENCE: CALL NPRIDS (NAME1, NAME2, IBOX, IEXT, IPROJ)
NAME1, NAME2 - User name (2 words)
IBOX - Mail address
IEXT - Telephone extensionIPROJ - User project number
REFERENCES: User-callable routine in the Operations Data block


## ROUTINE NAME: NPRNT

```
DESCRIPTION: This routine prints a summary of node information as the
    configuration is generated by routines BUILDC/ADD.
CALLING SEQUENCE: CALL NPRNT (NRMASS, NAME)
NRMASS - Array of node data
NAME - Block coordinate system name
REFERENCES: BUILDC, ADD
```

ROUTINE NAME: NPROTA
DESCRIPTION: This routine defines the transformation of the direction cosine
matrix, given the desired view.
CALLING SEQUENCE: CALL NPROTA

| KEY VARIABLES: | KC $\quad$ - Desired view number |
| :--- | :--- |
|  | $\mathrm{PH}, \mathrm{PS}, \mathrm{OM}$ - Angles necessary to arrive at desired view |

REFERENCES: NPMAIN

ROUTINE NAME: NPSCAL
DESCRIPTION: This routine determines the grid subject space, maps into the new space, and locates the pen/beam at the new origin.

GALLING SEQUENCE: CALL NPSCAL (XS, YS, X, Y)
XS - Scale factor
YS - Scale factor
$\mathrm{X}-0.0$
$Y-0.0$

REFERENCES: NPAXES

ROUTINE NAME: NPSPHE
DESCRIPTION: This routine, given the nodal dimensions, generates the plot calls necessary to draw a sphere or segment of a sphere.

GALLING SEQUENCE: CALL NPSPHE

REFERENCES: NPMAIN
ROUTINE NAME: NPTPLT
DESCRIPTION: This routine transforms a point in $3-D$ space to $X, Y$ coordinatesin the subject space, checks to determine if they are in theallowable range, and moves the pen/beam to the coordinates ofthat point.
CALLING SEQUENCE: CALL NPTPLT (I, XP, YP, X3, Y3, Z3)
flagXP, YP - Coordinates of transformed pointX3, Y3, Z3 - Coordinates of input point
REFERENCES: NPCONE, NPCYLO, NPDISC, NPPARA, NPRECT, NPSPHE, NPTRAP
ROUTINE NAME: NPTRAP
DESCRIPTION: This routine, given the nodal dimensions in the SCS generates the plot calls necessary to draw a trapezoid.
CALLING SEQUENCE: CALL NPTRAP
REFERENCES: NPMAIN
ROUTINE NAME: NUMBER
DESCRIPTION: This routine, given a value and a format, generates a numberon the plot frame.
CALLING SEQUENCE: CALL NUMBER (X, F)
X - Floating or integer number to be output
F - Output format
REFERENCES: NPINFO, OPINFO, PLDRIV, PLGRID

## ROUTINE NAME: ODATA

DESGRIPTION: This routine is user-called to define orbit data plotter options.

CALLING SEQUENCE: CALL ODATA (NV, SCL, SCLR, RPLN, TRUE, TIMEP, ISELN, ITIT, NPHF, NPSI, NOMI, OMI, PSI, PHI)

KEY VARIABLES: See Appendix D of users manual.
REFERENCES: User-called in the Operations Data block

ROUTINE NAME: OPAXES
DESCRIPTION: This routine defines the size and orientation of all characters to be'sma11 and horizonal, and draws and labels the CCS axis and sun line.

CALLING SEQUENCE: CALL OPAXES
REFERENCES: OPMAIN

ROUTINE NAME: OPCOMB
DESCRIPTION: This routine does matrix multiplication of the $A$ and $B$ input matrices and returns the results in matrix $C$.

CALLING SEQUENCE: CALL OPCOMB (A, B, C)
A - Input 3 x 3 matrix
B - Input $3 \times 3$ matrix
$C$ - Resultant matrix $(C=A * B)$

REFERENCES: OPLOC

ROUTINE NAME: OPCONE
DESCRIPTION: This routine, given the surface dimensions in the SCS, generates the portion of the cone defined, converts it to the CCS, and plots the results.

CALLING SEQUENCE: CALL OPCONE
REFERENGES: OPMAIN

ROUTINE NAME: OPCONV
DESCRIPTION: This routine converts the plot control data from common and checks for errors. If no data are defined in common, it sets up the proper default parameters.

CALLING SEQUENCE: CALL OPCONV (NV, NNP, KEND)
NV - P1ot view frame number
NNP - Number of nodes to be selectively plotted KEND - End flag determining if more plots are needed

REFERENCES: OPMAIN

ROUTINE NAME: OPCYLO
DESCRIPTION: This routine, given the surface/nodal dimensions in the SCS, detexmines the proper plot calls to draw a cylinder.

CALLING SEQUENCE: CALL OPCYLO
REFERENCES: OPMAIN

ROUTINE NAME: OPDISC
DESCRIPTION: This routine, given the surface/nodal dimensions in the SCSdetermines the proper plot calls to draw a disk.

CALLING SEQUENCE: CALL OPDISC
REFERENCES: OPMAIN

ROUTINE NAME: OPDOTL
DESCRIPTION: This routine connects P1 and P2 with a dotted line.
CALLING SEQUENCE: CALL OPDOTL (X1, Y1, Z1, X2, Y2, Z2)
$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z1}$ - Coordinates of P 1
$\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2$ - Coordinates of P2
REFERENCES: OPCONE, OPCYLO, OPPARA, OPSPHE

ROUTINE NAME: OPEDOT
DESCRIPTION: This routine generates the dotted lines used in the planet-and planet-shadow generation routines and connects points P1 and P2.

CALLING SEQUENCE: CALL OPEDOT (X1, Y1, Z1, X2, Y2, Z2, A)
Xl, Y1, Z1 - Coordinates of P1
X2, Y2, Z2 - Coordinates of P2
A - Factor determining the length of the line increment
REFERENCES: OPPLAN, OPSHAD

ROUTINE NAME: OPFPLT
DESCRIPTION: This routine directs the actions of the plot pen/beam. I may be even or odd, negative or positive. The value of I directs the plotter to the coordinates $X$, $Y$ with the pen up or down.

CALLING SEQUENCE: CALL OPFPLT (I, X, Y)

```
I - P1ot designator
    = Even, draw to (X, Y)
    = Odd position
    = Positive (generates new origin)
    = Negative (keep same origin)
```

REFERENCES: OPAXES, OPCONE, OPDOTL, OPTPLT, OPDISC, OPPARA, OPRECT, OPEDOT, OPSPHE, OPTRAP, OPVCS

ROUTINE NAME: OPINFO
DESCRIPTION: This routine labels all plot alphabetic data on the plot frame.
CALLING SEQUENCE: CALL OPINFO (NV, KEND)
NV - View frame number KEND - Error flag

REFERENCES: OPMAIN

ROUTINE NAME: OPLOC
DESCRIPTION: This routine, given the oribital parameters, determines the proper direction cosine matrix to give the proper orientation.

CALLING SEQUENGE: CALL OPLOC
REFERENCES: OPMAIN

```
ROUTINE NAME: OPMAIN
DESCRIPTION: This is the main driving logic to control the orbit plot link.
CALLING SEQUENCE: CALL OPMAIN
REFERENCES: OPPROG (preprocessor-generated)
ROUTINE NAME: OPMAX
DESCRIPTION: This routine determines the maximum radius needed to enclose
                                    any surface. This value is then used to determine the proper
                                    scale factor.
GALLING SEQUENCE: SCL = OPMAX (NNP)
                                NNP - Number of surfaces to be selectively plotted
REFERENCES: OPMAIN, OPCONV
ROUTINE NAME: OPPARA
DESCRIPTION: This routine, given the surface dimensions in the SCS,
    generates the plot calls necessary to draw a paraboloid.
GALLING SEQUENCE: CALL OPPARA
REFERENCES: OPMAIN
```


## ROUTINE NAME: OPPLAN

```
DESCRIPTION: This routine, given the desired planet radius for plotting
    (in inches), generates the logic necessary to draw the planet.
GALLING SEQUENCE: GALL OPPLAN
REFERENCES: OPMAIN
```

ROUTINE NAME: OPPRNT
DESCRIPTION: This routine generates a summary table of orbital parameters on the output file.

CALLING SEQUENCE: CALL OPPRNT
REFERENCES: OPMAIN

ROUTINE NAME: OPPROG
DESCRIPTION: This routine is generated by the preprocessor. It defines the necessary labeled common blocks and the calls into the main driving logic.

CALLING SEQUENCE: GALL OPPROG
REFERENCES: TRASYS (root segment)

ROUTINE NAME: OPRECT
DESCRIPTION: This routine, given the surface dimensions, generates the plot calls to draw a rectangle.

CALLING SEQUENCE: CALL OPRECT
REFERENCES: OPMAIN
ROUTINE NAME: OPROTA
DESCRIPTION: This routine defines the transformed direction cosine matrix, given the desired view.
CALLING SEQUENCE: CALL OPROTA
KEY VARIABLES: KC - Desired view number PH, PS, OM - Angles necessary to arrive at desired view
REFERENCES: OPMAIN
ROUTINE NAME: OPSCAL
DESCRIPTION: This routine determines the grid subject space, maps intothe new space, and locates the pen/beam at the new origin.
CALLING SEQUENCE: CALL OPSCAL (XS, YS, X, Y)
XS - Scale factor
YS - Scale factor
$X=0$

$$
Y=0
$$

REFERENCES: OPAXES
ROUTINE NAME: OPSHAD
DESCRIPTION: This routine draws the planet shadow.
CALLING SEQUENCE: CALL OPSHAD
REFERENCES: OPMAIN

## ROUTINE NAME: OPSPHE

## DESCRIPTION: This routine, given the surface dimensions, generates the plot calls necessary to draw a sphere or segment of a sphere.

CALLING SEQUENCE: CALL OPSPHE
REFERENCES: OPMAIN

## ROUTINE NAME: OPTIME

DESCRIPTION: This routine, given the eccentricity, true anomaly, and orbital period, computes the present orbital time.

CALLING SEQUENCE: CALL OPTIME (TIME, PER, ECC, TRU)
TIME - Computed orbital time
PER - Orbit period
ECC - Orbit eccentricity
TRU - True anomaly angle
REFERENCES: OPLOC

ROUTINE NAME: OPTPLT
DESCRIPTION: This routine transforms a point in $3-\mathrm{D}$ space to $\mathrm{X}, \mathrm{Y}$ coordinates in the subject space, checks to determine if the points are in the allowable range, and moves the pen/beam to the coordinates of that point.

CALLING SEQUENCE: CALL OPTPLT ( $\mathrm{I}, \mathrm{XP}, \mathrm{YP}, \mathrm{X} 3, \mathrm{Y} 3, \mathrm{Z3}$ )

> I $\quad$ - Pen-up, pen-down flag
> XP, YP $\quad$ - Coordinates of transformed point
> X3, Y3, Z3 - Coordinates of input point

REFERENCES: OPCONE, OPCYLO, OPDISC, OPPARA, OPSPHE, OPPRECT, OPTRAP

ROUTINE NAME: OPTRAP
DESCRIPTION: This routine, given the surface dimensions in the SCS, generates the plot calls necessary to draw a trapezoid.

CALLING SEQUENCE: CALL OPTRAP
REFERENCES: OPMAIN

ROUTINE NAME: OPTRNP
DESCRIPTION: This routine, given a $3 \times 3$ matrix, computes the transpose.
CALLING SEQUENCE: CALL OPTRNP (A, B)
A - $3 \times 3$ matrix to be transposed
B - 3 x 3 resultant matrix

REFERENCES: OPDOTL, OPTPLT, OPLOC

## ROUTINE NAME: OPTRS3

DESCRIPTION: This routine changes a translation vector from one coordinate system to the corresponding translation vector in the new system.

CALLING SEQUENCE: CALL OPTRS3 (X, Y, $2, A, B, C, R X, R Y, R Z, T R A N$ )
X, Y, Z - New translation vector
A, B, C - Translation vector in the old system
RX, RY, RZ - Translation vector in the new system
TRAN - Direction cosines relating the old system to the new system

REFERENCES: OPAXES, OPDOTL, OPTPLT, OPEDOT, OPVCS

ROUTINE NAME: OPUNIT
DESCRIPTION: This routine generates an identity matrix.
CALLING SEQUENCE: CALL OPUNIT (A)
A - Output unit matrix

REFERENCES: OPLOC

ROUTINE NAME: OPVCS
DESCRIPTION: This routine labels the vehicle axes on the plot.
CALLING SEQUENCE: CALL OPVCS
REFERENCES: OPMAIN
ROUTINE NAME: ORBIT1
DESCRIPTION: This routine can be called by the user in the Operations Datablock to define the orbit.
CALLING SEQUENCE: CALL ORBITI (PLANAM, ALANI, APEI, OIN, TIME, HPI, HAI, SRA, SDE, STA, STD)KEY VARIABLES: See users manual, Appendix D
REFERENCES: ODPROG
ROUTINE NAME: ORBIT2
DESCRIPTION: This is a user callable routine to define the desired orbit.
CALLING SEQUENCE: CALL ORBIT2 (PLANAM, CIG, BET, CIGS, BETS, TIME, HPI, HAI)
KEY VARIABLES: See users manua1, Appendix D
REFERENCES: ODPROG
ROUTINE NAME: ORIENT
DESCRIPTION: This routine allows the user to define the vehicle orien-tation.
CALLING SEQUENCE: CALL ORIENT (TYPE, IROTX, IROTY, IROTZ, ROTX, ROTY, ROTZ)
KEY VARIABLES: See users manual, Appendix D
REFERENCES: ODPROG
ROUTINE NAME: PAGEDESCRIPTION: This routine is called prior to every written statement tothe output file to count the line printed and take care of allpaging.
CALLING SEQUENCE: II = PAGE (I)$I I=0$ New page was written
1 No new pageI - Number of lines to be printed
ReFERENCES: All output generating routines.

```
DESCRIPTION: This routine, given a starting address, a final address,
and a type of address, dumps all cells in between.
CALLING SEQUENCE: CALL PDUMP (IS, IE, IT)
    IS - First word to start dumping from
    IE - Last word of dump
    IT - Type of dump
        \(=0-3\) Actual
        = 1 Real
        \(=2\) Integer
```

ROUTINE NAME: PLCFIT
DESCRIPTION: This routine does smooth-curve fitting. Given two arrays
LO words long (X, Y), it generates NO points between each
set of $X, Y$ points and stores the points in arrays $U$ and $V$.
CALLING SEQUENCE: CALL PLCFIT (LO, X, Y, NO, U, V)
Lo - Number of input points
X - Independent variable array
Y - Dependent variable array
NO - Number of divisions between each set of points
U, V - Output arrays
REFERENCES: PLDCON

ROUTINE NAME: PLDATA
DESCRIPTION: This routine can be called by the user in the Operations Data block to define PLOT link options.

CALLING SEQUENCE: CALL PLDATA (IP, INS, IS, CRVF, TLX, TLY, T1, T2, XMPF, YMPF)

KEY VARIABLES: See users manual, Appendix D
REFERENCES: Operations Data block

## ROUTINE NAME: PLDCON

DESCRIPTION: This routine checks for discontinuities in the output plot and calls for curve fitting between all discontinuities.

CALLING SEQUENCE: CALL PLDCON (NTIME, TIME, PARRAY, NODIV, NTOT, TIMP, PLOTP)
NTIME - Number of orbit points
TIME - Array of times
PARRAY - Array of dependent data
NODIV - Number of divisions between each point
NTDT - Number of output points
TIMP - Array of curve-fit points (independent)
PLOTP - Array of curve-fit points (dependent)

REFERENCES: PLDRIV

ROUTINE NAME: PLDRIV
DESCRIPTION: This routine is the main driving routine in the plot link. It decodes the type of plot and calls the proper routines.

CALLING SEQUENCE: CALL PLDRIV (RINDEP, S, DEPEND, RINDO, DEPO, IS, NDIV, NINDV)

RINDEP - Independent variable array
$S \quad$ - Temporary working array
DEPEND - Dependent variable array
RINDO - Independent variable array computed
DEPO - Dependent variable array output
IS - Temporary array (same as S)
NDIV - Number of divisions between curve-fit points
NINDV - Number of independent variable points allowed
REFERENCES: PLMAIN

## ROUTINE NAME: PLGRID

DESCRIPTION: This routine draws the plot grid and labels the complete frame.
CALLING SEQUENCE: CALL PLGRID (XMIN, XMAX, YMIN, YMAX, NODEN)
XMIN, XMAX, YMIN, YMAX - Minimum and maximum dimensions of plot frame
NODEN - Node number of current frame

## REFERENCES: PLDRIV

```
DESCRIPTION: This routine determines the type of plot and locates and
                finds the plot data if absorbed or incident flux data are
                        to be plotted.
CALLING SEQUENCE: CALL PLLOAD (DATA, TIME, IIIME, NTIME, NINDV)
    DATA - Working temporary array
    TIME, ITIME - Doublet array containing time and
        step number
    NTIME - Number of time points
    NINDV - Number of independent-variable points
```


## REFERENCES: PLMAIN

## ROUTINE NAME: PLMAIN

DESCRIPTION: This is the main driving routine in the plot segment. Its primary functions are to determine the size of the array and allocate array space.
CALLING SEQUENCE: CALL PLMAIN
REFERENCES: PLPROG (preprocessor-generated)
ROUTINE NAME: PLOUT
DESCRIPTION: This routine applies the dependent variable multiplier and converts fluxes to rates.
CALLING SEQUENCE: CALL PLOUT (NV, A1, A2, A3, A4, ITYPE)

| NV | - Number of arrays |
| ---: | :--- |
| A1, A2, A3, A4 | - Data arrays |
| ITYPE | Flag indicating flux or rate |
|  | $=4$ HFLUX heat flux |
|  | $=4 H R A T E$ heat rate |

REFERENCES: FNDFLP
ROUTINE NAME: PLPROG
DESCRIPTION: This routine is generated by the preprocessor and calls in the mainprocessor routines.
CALLING SEQUENCE: CALL PLPROG
REFERENCES: TRASYS (root segment)III-84

DESCRIPTION: This routine, given the maximum and minimum values, determines a scale using convenient units.

CALLING SEQUENCE: CALL PLSCL (BMAX, BMIN, NSQ, AU, AL, S)
BMAX, BMIN - Maximum and minimum values to be plotted
NSQ $\quad$ - Increment desired
AU, AL $\quad$ - New upper and lower values
S

REFERENCES: PLGRID

ROUTLNE NAME: PLSYMB
DESCRIPTION: This routine, given an array of Hollerith data, outputs the data to the plot frame and supplies the proper character terminator.

CALLING SEQUENCE: CAL工 PLSYMB (ARRAY, N)
ARRAY - Array of data to be printed
$\mathrm{N} \quad$ - Number of words in array
REFERENCES: PLGRID

ROUTINE NAME: PLUTOD
DESCRIPTION: This routine defines the orbital parameter concerning the planet Pluto.

GALLING SEQUENCE: CALL PLUTOD
KEY VARIABLES: PNAME - Planet name
RSUN ~ Radius of sun
ASUN - Area of sun
PRAD - Planet radius
PSD - Planet-sun distance
TSUN - Temperature of sun
SOL - Solar constant
PALB - Planet albedo factor
WDS - Darkside temperature
WSS - Sun side temperature
GRAV - Gravitational constant

REFERENCES: ORBIT1, ORBIT2

ROUTINE NAME: QOAVGR

```
DESCRIPTION: This routine computes the integrated average of the incident
        fluxes that were input.
CALLING SEQUENCE: CALL QOAVGR (NTLME, TIME, NUNIT)
    NTIME - Number of time points
    TIME - Doublet array of time and step number
    NUNIT - Unit number sorted fluxes are stored on
```

REFERENCES: QOMAIN
ROUTINE NAME: QOAVGS
DESCRIPTION: This routine, given the final data, outputs the data according
to the user requirements.
GALLING SEQUENCE: CALL QOAVGS (NODNO, QAV, AREAT)
NODNO - Node number
QAV - Averaged $Q$ value
AREAT - Area of node
REFERENCES: QOSAVE

ROUTINE NAME: QOCMBN
DESCRIPTION: This routine generates the combining data read from the correspondence data.

CALLING SEQUENCE: CALL QOCMBN (ICOMBL, IFIRSL)
ICOMBL - Number of points in Combine Array 1
IFIRSL - Number of points in Combine Array 2
REFERENCES: QOMAIN

```
DESCRIPTION: Based on the combine arrays, this routine combines and stores
    the data. A final call to this routine causes the combined
    tables to be output
CALLING SEQUENCE: CALL QOCOMB (DATA1, DATA2, ND1M1, ND1M2, NDIM, IFIRSL,
    ICOMBL, DATA, IROW, KTAB)
    DATA1, DATA2 -.Working storage blocks
    ND1M1, ND1M2 - Length of data blocks 1 and 2
    ND1M - Number of nodes
    IFIRSL, ICOMBL - Length of combining arrays
    DATA - Working storage array
    IROW - Sequence number of current row
    KTAB - Table number
```

REFERENCES: QOSAVE

ROUTINE NAME: QODATA
DESCRIPTION: This routine is called by the user to define particular parameters for the incident flux output QOCAL.

CALLING SEQUENCE: CALL QODATA (IARRAY, NTMARY, QOTP, SUN, AMPF, FMPF, TMPF, TYPE, NCOR)

KEY VARIABLES: See users manual, Appendix D for definition of variables

REFERENCES: Operations Data block

ROUTINE NAME: QOFLIP
DESCRIPTION: This routine, given a matrix (NTIME $x$ ICOL) stored on disk NS1, converts this to a matrix (ICOL $x$ NTIME) on unit NS2.

CALLING SEQUENCE: CALL QOFLIP (DATA, NTIME, ICOL, NS1, NS2)
DATA - Working storage area
NTIME - Number of rows
ICOL - Number of columns
NS1, NS2 - Input, output unit numbers

REFERENCES: QOMAIN

```
ROUTINE NAME: QOHEAD
DESCRIPTION: This routine outputs default and user control parameters
    to the output file.
CALLING SEQUENCE: CALL QOHEAD
REFERENCES: QOMAIN
ROUTINE NAME: QOMAIN
DESCRIPTION: This routine is the main driving logic for the Q\emptysetCAL link.
CALLING SEQUENCE: CALL QOMAIN
REFERENCES: QOPROG
ROUTINE NAME: QOPROG
DESCRIPTION: This routine is defined by the preprocessor. It defines
    all needed labeled common blocks and calls in the driving
    logic.
KEY VARIABLES: CALL QOPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: QOSAVE
DESCRIPTION: This routine reads the uncombined data point \(s\) and, from the input options directs the combining and output options.
CALLING SEQUENCE: CALL QOSAVE (ICOMBL, IFIRSL, NTIME, TIME)
ICOMBL, IFIRSL - Length of the combining arrays
NTIME - Number of time points
TIME - Double array of step numbers and times
```

REFERENCES: QOMAIN

ROUTINE NAME: QOSBCD
DESCRIPTION: This routine is called to output the subroutine Call cards.
CALLING SEQUENCE: CALL QOSBCD (PER, ITIME, KTAB, AREAT, NODNO)
PER - Orbit period
ITIME - Time array number
KTAB - Table number reference number AREAT - Area
NODNO - Node number

REFERENCES: QOSAVE

ROUTINE NAME: QOTABS
DESCRIPTION: This routine is called to generate the final output tables.
CALLING SEQUENCE: CALL QOTABS (KTAB, DATA, NTIME, ARE)
KTAB - Output array number
DATA - Arrays of $Q$ data
NTIME - Number of data points
ARE - Area of node

REFERENCES: QOSAVE

ROUTINE NAME: QOTIMES
DESCRIPTION: This routine is called to output the time array in final form.
CALLING SEQUENCE: CALL QOTIMES (ITME, TIME, NTIME)
ITME - Time array number
TIME - Array of times
NTIME - Number of time points
REFERENCES: QOSAVE

ROUTINE NAME: RBAREA
DESCRIPTION: This is a function routine that calculates elemental areas for unevenly distributed elements of unequal size.

CALLING SEQUENCE: RBAREA (ILP, ALPH, BMIN, BMAX, GMIN, GMAX)


REFERENCES: RBEXPN

ROUTINE NAME: RBCAL
DESCRIPTION: This routine contains the driving logic to determine the number and distribution of elements on node IN, as well as on the image of node $\mathbb{N}$ as seen in specular surface MIRROR. It also calculates the image factor from node IN to node JN.

CALLING SEQUENCE: CALL RBCAL (MIRROR)
MIRROR - Surface sequence number of current specular surface

KEY VARIABLES: IN, JN - Sequence numbers of current node pair FE, FA - IR and solar form factors from node IN to image of node JN in specular surface MIRROR
WE, WA - IR and solar shadowing factors
RBVALI, RBVALS - IR and solar image factors between node IN and node $J \mathbb{N}$
KN - Sequence number of current specular node SREFLI, SREFLS - Arrays of IR and solar specular reflectance values

REFERENCES: RBPRE
FILES: NOUT - System output file

DESCRIPTION: Given the number of elements in each direction, this routine calculates the elemental position and area vectors.

CALLING SEQUENCE: CALL RBELEM (NB, NG, ILP, IC, DATA, POS, ARA, TRAN, RX, RY, RZ)

NB, NG - Number of elements in the beta and gamma directions
ILP - Surface type
IC - Counter for total number of elements on node pair
DATA - Array of node dimensions
POS - Array of elemental position vectors
ARA - Array of elemental area vectors
TRAN - Matrix of direction cosines
RX, RY, RZ - Components of SCS origin position vector in the ICS, BCS, or CCS

REFERENCES: RBCAL, RBEXPN

## ROUTINE NAME: RBELSL

DESCRIPTION: Given the total number of elements required on a node, this routine makes them as square as possible and determines the number of elements in each direction.

CALLING SEQUENCE: CALL RBELSL (NB, NG, ILP, DATA, NTOT)
NB, NG - Number of elements in the beta and gamma directions
ILP - Surface type
DATA - Array of node dimensions
NTOT - Number of elements required on a node

REFERENCES: RBCAL, RBEXPN

ROUTINE NAME: RBEND
DESCRIPTION: This routine provides for user intervention after the image factor calculation. It normally calls for a time accounting for the problem and end-files the image factor file on NFF.

CALLING SEQUENCE: CALL RBEND

REFERENCES: RBMAIN
FILES: NFF - Disk file for storing image factors.

```
ROUTINE NAME: RBESUM
DESCRIPTION: This routine provides an accounting, in CP seconds, of
    the time required to calculate image factors.
CALLING SEQUENCE: CALL RBESUM
REFERENCES: RBEND
FILES: NOUT - System output file
```

ROUTINE NAME: RBEXPN
DESCRIPTION: This routine expands nodes into subnodes, determines the number and distribution of elements on each subnode, and calculates more accurate image factors than would be possible on a nodal basis.

CALLING SEQUENCE: CALL RBEXPN (POSI, ARAI, FE, FA, RATI, RATJ, JFLAG, JST, NEI, NEJ, NSUR, IADDR, MIRROR)

POSI - Array of elemental position vectors
ARAI - Array of elemental area vectors
FE, FA - Resultant IR and solar form factors
RATI, RATJ - Ratio of maximum number of elements indicated by arithmetic average
JFLAG , - Flag indicating that maximum number of elements was exceeded
JST - Number of possible shadowers
NEI, NEJ - Number of elements on nodes $I$ and $J$
NSUR - Actual number of shadowing surfaces
IADDR - Maximum time return sequence (not used)
MIRROR - Surface sequence number of current specular surface

REFERENCES: RBCAL

## ROUTINE NAME: RBGTST

DESCRIPTION: This is an integer function routine that tests a given value, $G T$, to determine if it falls in the range $G N \leq G T \leq G X$. If it does, the function value is 0 (zero); if not, the function value is 1 (one).

CALLING SEQUENCE: RBGTST (GN, GX, GT)
GN - Lower bound
GX - Upper bound
GT - Value to be tested

REFERENCES: RBSHD
ROUTINE NAME: RBIMAG
DESCRIPTION: This routine images surfaces for shadowing purposes and stores the results on NSCR2 for later use.
CALLING SEQUENCE: CALL RBIMAG (NST)
NST - Total number of shadowing surfaces
KEY VARIABLES: JS - Surface sequence number of currentspecular surface
NSURFS - NST plus number of images in specularsurface JS
IFS, IKS, PR,DSTR, EIMJ,PSH, TSTR - Surface description parameters
REFERENCES: RBMAIN
FILES: NSCR2 - Scratch file
ROUTINE NAME: RBMAIN
DESCRIPTION: This routine contains the main driving logic for calcu- lating image factors.
CALLING SEQUENCE: CALL RBMAIN
KEY VARIABLES: IN - Sequence number of "viewer" nodeJN - Sequence number of node whose image in $K N$is viewed by IN
KN - Sequence number of specular nodeISPEC - Array of specular surface sequence numbers
REFERENCES: RBPROG (preprocessor-developed)FILES: NRAN - Random access fileNSCR2 - Scratch file

ROUTINE NAME: RBNIMG
DESCRIPTION: This routine images the current node $J N$ in the current specular surface.

CALLING SEQUENCE: CALL RBNIMG (JM, NOIM)

```
JM - Surface sequence number of current specular
surface
NOIM - Flag to indicate if an image of the current
    node exists in JM
    = 0, an image exists
    = 1, no image
```

```
KEY VARIABLES: POSNJ, RXJ
    RYJ, RZJ, DATAJ,} Nodal description parameters
    TRANJ
```

REFERENCES: RBMAIN

FILES: NRAN - Random access file

ROUTINE NAME: RBOUT
DESCRIPTION: This is a user routine that can be replaced to change the form of output for image factors. The normal calls are to RBPNCH (punches image factors) and RBPRNT (prints image factors).

CALLING SEQUENCE: CALL RBOUT
REFERENCES: RBMAIN

ROUTINE NAME: RBPNCH
DESCRIPTION: This routine punches the image factor between node IN and node JN. The user can override this routine to change the output format if he desires.

CALLING SEQUENCE: CALL RBPNCH
KEY VARIABLES: IN - Sequence number of "viewer" node
JN - Sequence number of "viewee" node NODE - Array of node numbers
RBVALI, RBVALS - IR and solar image factors ISTPDR - Array of step numbers

REFERENCES: RBOUT

FILES: PUNCH - System punch file

ROUTINE NAME: RBPOSI
DESCRIPTION: This routine transposes a vector in the ICS, BCS, or CCS into the SCS of the current specular surface, negates the $Z$ component, and transforms the vector back into the ICS, BCS, or CCS.

CALLING SEQUENCE: CALL RBPOSI (X, Y, $Z$, TRAN)

$$
X, Y, Z \text { - Components of vector in the SCS }
$$

TRAN - Matrix of direction cosines
KEY VARIABLES: A, B, C - Components of vector in the ICS, BCS, or CCS
REFERENCES: RBIMAG, RBNIMG

ROUTINE NAME: RBPRE
DESCRIPTION: This routine provides for user intervention prior to the calculation of an image factor. The normal call is to RBCAL, which calculates the image factor.

CALLING SEQUENCE: CALL RBPRE (MIRROR)

$$
\begin{aligned}
& \text { MIRROR - Surface sequence number of current specular } \\
& \text { surface }
\end{aligned}
$$

## REFERENCES: RBMAIN

ROUTINE NAME: RBPRNT
DESCRIPTION: This routine points the image factor between node IN and node JN. The user can override this routine to change the output format if he desires.

CALLING SEQUENCE: CALL RBPRNT
KEY VARIABLES: IN - Sequence number of "viewer" node
JN - Sequence number of "viewee" node
NODE - Array of node numbers
RBVALI, RBVALS - IR and solar image factors
REFERENCES: RBOUT
FILES: NOUT - System output file

## ROUTINE NAME: RBPSHD

```
DESCRIPTION: This routine determines all possible shadowing surfaces
                between node IN and the image of node JN in specular sur-
                        face MIRROR.
CAELING SEQUENCE: CALL RBPSHD (RADJ, RADI, POSJ, POSI, NSURF, NSS, JST,
            IN, JN, MIRROR)
                    RADJ, RADI - Radii of sphere enclosing nodes IN and JN
                    POSJ, POSI - Position vectors of enclosing spheres
                            NSURF - Number of shadowing surfaces
                                    NSS - NSURF plus all surface images in specular
                                    surface MIRROR
                                    JST - Number of possible shadowing surfaces
                                    found
                                    IN, JN - Sequence numbers of surfaces containing
                                    nodes IN and JN
                                    MIRROR - Sequence number of current specular
                                    surface
```

REFERENCES: RBCAL, RBEXPN

ROUTINE NAME: RBRDIN
DESCRIPTION: This routine sets up the shadowing data arrays, reads form factors from the NFF file written in the FF link and writes them on a scratch file for later use, and initializes the NFF file for storage of image factors.

CALLING SEQUENCE: CALL RBRDIN


REFERENCES: RBMAIN

```
FILES: NFF - Disk file for storage of image factors
    NFFR - Image factor restart file
    NOUT - System output file
    NRAN - Random access file
    NSCRI - Scratch file
```

ROUTINE NAME: RBRDRQ
DESCRIPTION: This routine initializes the image factor arrays andreads restart values if they are available.
CALLING SEQUENCE: CALL RBRDRQ
KEY VARIABLES: FFVALI, FFVALS - IR and solar form factors from the FF link.Also used for image factor restart valuesRBVALI, RBVALS - IR and solar image factor arrays
REFERENCES: RBMAIN
FILES: NFFR - Image factor restart file NOUT - System output file NSCRI - Scratch file
ROUTINE NAME: RBROW
DESCRIPTION: This routine writes image factor data on file NFF by rows.
CALLING SEQUENCE: CALL RBROW
KEY VARIABLES: IN - Image factor row numberNODE - Array of node numbersRBVALI, RBVALS - IR and solar image factors
REFERENCES: RBMAIN
FILES: NFF - Disk file for storing image factors
ROUTINE NAME: RBRPSN
DESCRIPTION: This routine calculates the minimum radius of a sphere that will encompass a given subnode and determines the position vector to the center of the sphere.
CALLING SEQUENCE: CALL RBRPSN (RADN, POSN, ILK, DATA, BETA, GAMMA, DB, DG)RADN - Radius of encompassing spherePOSN - Position vector of sphere
ILK - Surface type of node
DATA - Surface dimension valuesBEI'A - Distance from edge of node to center ofcurrent subnode in the beta directionGAMMA - Distance from edge of node to center ofcurrent subnode in the gamma direction
DB, DG - Dimensions of subnode in the beta and
gamma directions
REFERENCES: RBEXPN
ROUTINE NAME: RBRSUM
DESCRIPTION: This routine prints out the time required to calculate one row of image factors.
CALLING SEQUENCE: CALL. RBRSUM
REFERENCES: RBROW
FILES: NOUT - System output file
ROUTINE NAME: RBSHD
DESCRIPTION: This routine calculates the elemental shadowing between surfaces $I N$ and the image of surface $J N$ in specular surface MIRROR. An element is either completely shadowed or not shadowed at all. Shadowing is reduced by the transmissivity semitransparent shadowing surfaces.
CALLING SEQUENCE: CALL RBSHD (ILKI, RX, RY, RZ, POSI, WE, WA, JST, IN, JN, I, NSS, RS, MIRROR)
KEY VARIABLES: ILKI - Surface type in IN RX, RY, RZ - Components of vector from element on node I to element on node J
POSI - Array of elemental position vectors
WE, WA - Elemental shadowing factors for IR and solar image factors
JST - Number of possible shadowing surfaces
IN, JN - Surface sequence numbers
I - Element sequence number
NSS - Number of possible shadowers (including images) connecting vector $\left(R X^{2}+R Y^{2}+R Z^{2}\right)$
MIRROR - Sequence number of current specular surface
REFERENCES: RBCAL, RBEXPN
ROUTINE NAME: RBTMCK
DESCRIPTION: This routine calculates the time remaining in the run andcompares it with the estimated time for the next calculation.If insufficient time remains, the run is aborted.
CALLING SEQUENCE: CALL RBRMCK (IADDR, MAXLFT)
IADDR - Not usedMAXLFT - Estimated time required for next calculation
KEY VARIABLES: M - Time remaining in run
REFERENCES: RBCAL, RBEXPN
FILES: NOUT - System output file

## ROUTINE NAME: RBTRS3

DESCRIPTION: This routine transforms points in an SCS to points in the ICS, BCS, or CCS.

CALLING SEQUENCE: CALL RBTRS3 ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}, \mathrm{TRAN}$ )
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Coordinates of point in the ICS, BCS, or CCS
$A, B, C$ - Coordinates of point in the SCS
RX, RY, RZ - Components of the SCS origin position vector in the ICS, BCS, or CCS
TRAN - Matrix of direction cosines

REFERENCES: RBELEM

ROUTINE NAME: RBVIEW
DESCRIPTION: This routine calculates the unshadowed form factor between node IN and the image of node JN. It also calculates RATI and RATJ, which will later be compared with the user-input variable, FFRATL, to see if the nodes should be expanded into subnodes for better accuracy.

CALLING SEQUENCE: CALL RBVIEW (NTI, NTJ, POSI, ARAI, NTOTI, NTOTJ, ARI, ARJ, NOT, FRACT, RATI, RATJ)

NTI - Initial number of elements on node IN
NTJ - Total initial number of elements on node IN and the image of node JN
POSI - Array of elemental position vectors
ARAI - Array of elemental area vectors
NTOTI, NTOTJ - Number of elements required on node IN and the image of node $J N$
ARI, ARJ - Areas of node IN and the image of node JN
NOT - Flag to indicate whether node IN can "see" the image of node JN
$=0$ Can see
$=1$ Cannot see
FRACT - Unshadowed node-to-image form factor RATI, RATJ - Ratios of indicated maximum elements required to NTOTI and NTOTJ

REFERENCES: RBCAL

## ROUTINE NAME: RBVWT

## DESCRIPTION: This routine calculates unshadowed form factors between subnodes and determines the number of elements required, based on a weighted-average criterion.

CALLING SEQUENCE: CALL RBVWT (NTI, NTJ, POSI, ARAI, NTOTI, NTOTJ, ARI, ARJ, NOT, FRACT)

NTI - Number of elements on the subnode of node IN
NTJ - Total number of elements on the subnode of node IN and the subnode of the image of node IN
POSI - Array of elemental position vectors
ARAI - Array of elemental area vectors
NTOTI, NTOTJ - Number of elements required on the subnodes of node IN and the image of node JN
ARI, ARJ - Areas of subnodes
NOT - Flag to indicate whether the subnode on node IN can "see" the image of node JN
= 0 Can see
$=1$ Cannot see
FRACT - Unshadowed subnode-to-subnode form factor

REFERENCES: RBEXPN
ROUTINE NAME: RCBTP
DESCRIPTION: This routine generates a binary tape on unit USER1 that is acceptable as input into an intermediate Univac program.
CALLING SEQUENCE: CALL RCBTP (NI, NJ, SFA)
$\mathrm{NI}=0-$ Flag to complete write and end file
= O - Node $i$
NJ - Node $\mathbf{j}$
SFA - Script F times area value
KEY VARIABLES: NLA - Array 100 cells long used to block node i NIA - Array 100 cells long used to block node $j$ ASFA - Array 100 cells long used to block SFA
REFERENCES: RCOUT, RCMAIN
FILES: USER1
ROUTINE NAME: RCCMBN
DESCRIPTION: This routine, given an array defining combinations,combines and calls the output routines.
CALLING SEQUENCE: CALL RCCMBN (ICOMB, ICOMBL, SF, SPACNO, NUNIT)
ICOMB - Array of combination dataICOMBL - Length of ICOMB arraySF - Temporary array to store script $F$SPACNO - Array to store script $F$ to spaceNUNIT - Unit containing gray-body matrix
REFERENCES: RCMAIN
FILES: NSCR3
ROUTINE NAME: RCDATA
DESCRIPTION: This routine is user-called in the Operations Data blockand defines parameters for the RCAL link.
CALLING SEQUENCE: CALL RCDATA (NSGBIR, PNCH, FMIN, IRKN, RKSPC, NSPAC,SIG, AMPF, TAPE, RADI, NEFI, IPRIM, ISEC)
KEY VARIABLES: See user's manual, Appendix D
REFERENCES: Operations data block
ROUTINE NAME: RCEND
DESCRIPTION: This routine can be replaced by the user to intervene just prior to the end of the RCCAL link.
CALLING SEQUENCE: CALL RCEND
REFERENCES: RCMAIN
ROUTINE NAME: RCHEAD
DESCRIPTION: This routine prints the control parameters on the output file.
CALLING SEQUENCE: CALL RCHEAD
REFERENCES: RCMAIN
ROUTINE NAME: RCMAIN
DESCRIPTION: This is the main driving logic of the RCCAL link and directs the main logic flow.
CALLING SEQUENCE: CALL RCMAIN
REFERENCES: RCPROG (preprocess or generated)
ROUTINE NAME: RCMINC
DESCRIPTION: This routine eliminates small RADK's less than RKMIN bysetting them to zero.
CALLING SEQUENCE: $A=\operatorname{RCMINC}(I, J, X)$I - Sequence number of node $i$$J$ - Sequence number of node $j$
X - RADK value
A - Flag indicating value returned$=2 \mathrm{HNO}$ Value is greater than RKMIN
$=3 H Y E S$ Value is less than RKMIN
REFERENCES: RCOUT
ROUTINE NAME: RCMRC
DESCRIPTION: This routine condenses the RADKs to account for the significant portion of the energy.
CALLING SEQUENCE: CALL RCMRC
REFERENCES: RCMAIN
ROUTINE NAME: RCOUT
DESCRIPTION: This routine outputs the original radiation conductorsand saves the significant ones on unit NSCR1 for condensing.
CALLING SEQUENCE: CALL RCOUT (X, I, J)
X - Flag to output all radiation conductors

- RADK value
I - Sequence number for node 1
J - Sequence number for node $j$
- Flag indicating a space radiation conductor
REFERENCES: RCCMBN, RCMAIN
ROUTINE NAME: RCPNCH
DESCRIPTION: This routine defines the final output form of the RADKsin the form of cards, $B C D$ tape, or binary tape.
CALLING SEQUENCE; CALL RCPNCH (ICN, NI, NJ, SIG, SFA)
ICN - Conductor number
NI - Node 1
NJ - Node j
SIG - Stephan-Boltzmann constant
SFA - Script F area factor
REFERENCES: RCOUT
FILES: BCDOU, USER1, PUNCH
ROUTINE NAME: ..... RCPRE
DESCRIPTION: This routine can be replaced by the user to provide intervention prior to the RCCAL computation in the RCCAL link.
CALLING SEQUENCE: CALL RCPRE
REFERENCES: RCMAIN
ROUTINE NAME: RCPROG
DESCRIPTION: This routine is generated by the preprocessor. It defines all labeled common blocks required by the RCCAL link, as well as calls into the main logic.
CALLING SEQUENCE: CALL RCPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: RCRORD
DESCRIPTION: This routine reorders the radiation conductors on the basis of increasing value.
CALLING SEQUENCE: CALL RCRORD (MAXBC, NNOD)MAXBC - Not usedNNOD - Number of nodes
REFERENCES: RCMRC
FILES: NSCR1, NSCR2
ROUTINE NAME: RCSAVE
DESCRIPTION: This routine outputs the radiation conductors on a scratch file.
CALLING SEQUENCE: CALL RCSAVE (ICN, NI, NJ, SIG, SFA)
ICN - Conductor number
NI - Node i number
NJ - Node $j$ number
SIG - Stephan~Boltzmann constant
SFA - Script F area factor
REFERENCES: RCOUT
FILES: NSCR1III-106

```
DESCRIPTION: This routine sorts one array into another using a bin
    sorting technique.
CALLING SEQUENCE: CALL RCSORT (NN, IA, IB)
    NN - Number of input points
    IA - Input array
    IB - Scratch array, length = NN
```

REFERENCES: RCRORD
ROUTINE NAME: RDMAIN
DESCRIPTION: This routine initializes the variables used in theprocessor via three methods;

1) Reads in the sequential file;
2) Sets variables with predefined data;
3) Reads in the random I/O file.
CALLING SEQUENCE: CALL RDMAIN
REFERENCES: RDPROG
FILES: NSQNTL, RTO
ROUTINE NAME: RDPROG
DESCRIPTION: This is a preprocessor-generated routine that callsthe initialization routine.
CALLING SEQUENCE: CALL RDPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: RĨOPAC
DESCRIPTION: This routine was written for the Univac computer tosimulate the CDC random access package.
CALLING SEQUENCE: CALL RIOPAC (NUNIT, FWA, NWDS, NR)NUNIT - Unit numberFWA - Address of first word to readNWDS - Number of words to be readNR - Record number
REFERENCES: FFRDIN, DIRDIN, RDMAIN
ROUTINE NAME: RKBTP
DESCRIPTION: This routine generates a binary tape on unit USER1 thatis acceptable as input into an intermediate Univac program.
CALLING SEQUENCE: CALL RKBTP (NI, NJ, SFA)
$\mathrm{NI}=0-$ Flag to complete write and end file unit $\neq 0$ - Node i number
NJ - Node $j$ number
SFA - Script $F$ times area value
KEY VARIABLES: NIA, NJA - Arrays 100 cells long used to block node numbers

ASFA - Array 100 cells long used to block script F values
REFERENCES: RKOUT, ..... RKMAIN
ROUTINE NAME: RKCMBN
DESCRIPTION: This routine, given an array defining combinations, combines and calls the output routine.
CALLING SEQUENCE: CALL RKCMBN (ICOMB, ICOMBL, SF, SPACNO, NUNIT)
ICOMB - Array of combination data
ICOMBL - Length of ICOMB array
SF - Temporary array to store script FSPACNO - Array to store script $F$ to spaceNUNIT - Unit containing gray-body matrix
REFERENCES: RKMAIN
ROUTINE NAME: RKDATA
DESCRIPTION: This routine is user-called in the Operations Data blockand defines parameters for the RKCAL link.
CALLING SEQUENCE: CALL RKDATA (NSGBIR, PNCH, FMIN, IRKN, RKSPC, NSPAC,SIG, AMPF, TAPE)
KEY VARIABLES: See users manual, Appendix D
REFERENCES: Operations Data block
ROUTINE NAME: ..... RKEND
DESCRIPTION: This routine can be replaced by the user to intervene just prior to the end of the RKCAL link.
CALLING SEQUENCE: CALL RKEND
REFERENCES: RKMAIN
ROUTINE NAME: RKHEAD
DESCRIPTION: This routine prints the user control parameters on the output file.
CALLING SEQUENCE: CALL RKHEAD
REFERENGES: RKMAIN
ROUTINE NAME: RKMAIN
DESCRIPTION: This is the main driving logic of the RKCAL 1ink and directs the main logic flow.
CALLING SEQUENCE: CALL RKMAIN
REFERENCES: RKPROG (preprocessor-generated)
ROUTINE NAME: RKMINC
DESCRIPTION: This routine eliminates small RADKs less than RKMIN by setting them to zero.
CALLING SEQUENCE: $A=$ RKMINC (I, J, X)
I - Sequence number of node $i$
J - Sequence number of node $j$
X - RADK value.A - Flag indicating value returned
= 2HNO Value is greater than RKMIN
= 3HYES Value is less than RKMIN
REFERENCES: RKOUT
ROUTINE NAME: RKOUT
DESCRIPTION: This routine applies the area multiplier, calls to check minimum values, and calls for final outputting.
CALLING SEQUENCE: CALL RKOUT (X, I, J)
X - Flag to output all radiation conductors

- RADK value
I - Sequence number of node i
$J$ - Sequence number of node $j$flag indicating a space RADK
REFERENCES: RKCMBN, ..... RKMAIN
ROUTINE NAME: RKPCH
DESCRIPTION: This routine defines the final output form of the RADKs in theform of cards, $B C D$ tape, or binary tape
CALLING SEQUENCE: CALL RKPCH (ICN, NI, NJ, SIG, SFA)
ICN - Initial conductor value
NI - Node i
NJ - Node j
SIG - Stephan-Boltzmann constant
SFA - Script $F$ area factor
REFERENCES: RKOUT
FILES: BCDOU, USER1, PUNCH
ROUTINE NAME: RKPRE
DESCRIPTION: This routine can be replaced by the user to provide inter-vention prior to the RKCAL computation in the RKCAL link.
CALLING SEQUENCE: CALL RKPRE
REFERENCES: RKMAIN

```
DESCRIPTION: This routine is generated by the preprocessor. It defines
        all labeled commons required by the RKCAL link, and calls
        in the main logic in RKMAIN.
```

CALLING SEQUENCE: CALL RKPROG
REFERENCES: TRASYS (root segment)
ROUTINE NAME: SATURD
DESCRIPTION: This routine sets up the planet parameters concerning the
planet Saturn.
CALLING SEQUENCE: CALL SATURD
KEY VARIABLES: PRAD - Planet radius
SOL - Solar constant
PALB - Planet albedo factor
WDS - Planet darkside temperature
WSS - Planet sun side temperature
GRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: SETBEA
DESCRIPTION: This routine positions a plot beam at the coordinates of a
point in the subject mapping.
CALLING SEQUENCE: CALL SETBEA (X, Y)
X, Y - Coordinates of point
REFERENCES: NPAXES, NPFPLT, NPSCAL, OPAXES, OPFPLT, OPSCAL, OPVCS, PLDRIV
ROUTINE NAME: SFCLCO
DESCRIPTION: This routine computes the clock and cone angles, given a
position vector.
CALLING SEQUENCE: CALL SFCCCO (X, Y, Z, CL, CO)
X, Y, Z - Position vector input
(L - Computed corresponding clock angle
CO - Computed corresponding cone angle
REFERENCES: DICALS, DICALP

ROUTINE NAME: SFDATA
DESCRIPTION: This routine allows the user to define the control parameters for the SFCAL link. This routine is called from the Operations Data block.

CALLING SEQUENCE: CALL SFDATA (NT, NO)
NT - Configuration name of shadow factors on the PLSR file to use in the SFCAL link. If 0 , recompute NO - Configuration name to use when writing the SHADO and PLS files. If 0 , do not write a tape

REFERENCES: Operations Data block

ROUTINE NAME: SFELAV
DESCRIPTION: This routine computes the position and area vectors for elements on a node given the nodal dimensions.

CALLING SEQUENCE: CALL SFELAV (LLP, DATA, TRAN, RX, RY, RZ, NB, NG)

| ILP | - Surface type |
| :--- | :--- |
| DATA | - Array of surface dimensions |
| TRAN | - Direct cosine matrix for node |
| RX, RY, RZ | - Position vector for node |
| NB, NG | - Number of elements in the two directions |
|  |  |
|  | the node is to be divided into |

REFERENCES: SFMAIN

ROUTINE NAME: SFELEM
DESCRIPTION: This routine, given the nodel dimensions and the total number of elements required, determines the number of elements in each direction.

CALLING SEQUENCE: CALL SFELEM (ILP, DATA, TRAN, RX, RY, RZ, NTOT)

| ILP | - Node type |
| :--- | :--- |
| DATA | - Array of node dimensions |
| TRAN | - Direction cosine matrix for node |
| RX, RY, RZ | - Position vector for node |
| NTOT | - Total number of elements required |
|  | on node |

REFERENCES: SFMAIN

III-112

DESCRIPTION: This routine establishes the minimum number of elements on a node to determine if a view is possible.

CALLING SEQUENCE: CALL SFELMT (NB, NG)
$N B, N G$ - Minimum number of elements required to provide a representative view from the node

REFERENCES: SFMAIN

ROUTINE NAME: SFELSL
DESCRIPTION: This routine, given the total number of elements and the nodal dimensions, computes the number of elements in each direction to provide near-square elements.

CALLING SEQUENCE: CALL SFELSL (NB, NG, ILP, DATA, NTOT)
NB, NG - Computed number of elements required in various directions
ILP - Surface type
DATA - Array of surface dimensions.
NTOT - Total number of elements to be used on the node

## REFERENCES: SFMAIN

ROUTINE NAME: SFGBT
DESCRIPTION: This routine, given the allowable ranges on gamma concerning shadowing and given a gama value, returns a or 1 depending on the range.

CALLING SEQUENCE: CALL SFGTST (GN, GX, GT)
GN, GX - Mintmum, maximum range
GT - Value to be checked

REFERENCES: SFSHAD

```
ROUTINE NAME: SFMAIN
DESCRIPTION: This is the main driving routine in the SFCAL link and
    directs the logic flow necessary to generate a shadow tape.
CALLING SEQUENGE: CALL SFMAIN
REFERENCES: SFPROG (preprocessor-generated)
ROUTINE NAME: SFPACK
DESCRIPTION: This routine packs 19 shadow-factor cone angles into one
    word and generates }19\mathrm{ words each time the routine is called.
    These }19\mathrm{ words are then written to PLS and SHADD (if requested)
    once every 10 calls. Entry point SFFLSH is called to write
    the last record and complete the writing sequence.
GALLING SEQUENCE: CALL SFPACK (TABSHA, ICNT)
    TABSHA - Unpacked shadow factors
    ICNT - A number from 0 to 9 designating which set of 10
        nodes is currently being packed
```

REFERENCES: SFMAIN
ROUTINE NAME: SFPROG
DESCRIPTION: This routine is generated by the preprocessor and calls
into the SFCAL link, and provides the necessary labeled
commons.

CALLING SEQUENCE: CALL SFPROG
REFERENCES: TRASYS (root segment)

ROUTINE NAME: SFPSHS
DESCRIPTION: This routine determines which surfaces could possibly shadow between node $i$ and the sun.

```
GALLING SEQUENCE: CALL SFPSHS (RADS, POS, SUNP, NSURF, NSHAD, IN)
    RADS - Radius of node i
    POS - Position vector of node i
    SUNP - Position vector for sun
    NSURF - Number of shadowing surfaces
    NSHAD - Number of possible shadowers:
    IN - Sequence number of node i
KEY VARIABLES: ISHAD - Array of possible shadowers
REFERENCES: SFMAIN
```


## ROUTINE NAME: SFRDIN

```
DESCRIPTION: This routine checks for restart information and sets the proper flags for the program. The shadowing surfaces are also set up in terms of the labeled commons.
CALLING SEQUENCE: CALL SFRDIN
REFERENCES: SFMAIN
```


## ROUTINE NAME: SFRDRQ

```
DESCRIPTION: This routine reads in the restart data for one node at a time.
CALLING SEQUENCE: CALL SFRDRQ (IFLG, TABSHA, IN)
IFLG - Data check flag
= 2 HNO No data found
= 3HYES Data found
TABSHA - Array of restart data for node \(i\)
IN - Sequence number for node \(i\)
REFERENCES: SFMAIN
```


## ROUTINE NAME: SFSHAD

DESCRIPTION: This routine computes element-to-element shadowing between node $i$ and the sun.

CALLING. SEQUENCE: CALL SFSHAD (RX, RY, RZ, WE, WA, IN, I, NSS, RS)
RX, RY, RZ - Components of vector from element on node $i$ to sun
WE, WA - Elemental shadowing factors for IR and solar
IN - Surface sequence numbers
I - Element sequence number
NSS - Number of possible shadowers
RS - Square of the magnitude of the element-to-sun connecting vector

## REFERENCES: SFMAIN

## ROUTINE NAME: SFIRS3

DESCRIPTION: This routine transforms points in an SCS to points in the ICS, BCS, or CCS.

CALLING SEQUENCE: CALL SFTRS3 (X, Y, Z, A, B, C, RX, RY, RZ, TRAN)
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - Coordinates of a point in the ICS, BCS, or CCS
A, B, C - Coordinates of the point in the SCS
RX, RY, RZ - Components of the SCS origin position vector in the ICS, BCS, or CCS
TRAN - Matrix of direction cosines

REFERENCES: SFELAV, SFELEM

ROUTINE NAME: SFUNCT
DESCRIPTION: This function, given a clock angle and a cone angle, interpolates the packed clock angle-cone angle array located in labeled common, computes the function value and stores the value in SFT.

CALLING SEQUENCE: $A=\operatorname{SFUNCT}(C L, C O S F T)$
CL - Clock angle
CO - Cone angle
SFT, A - Interpolated value

REFERENCES: DICALS, DICALP

## ROUTINE NAME: SHADPT

DESCRIPTION: This routine computes the shadow points, given the orbitdefinition.
calling sequence: call shadpt
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: SINX
DESCRIPTION: This routine computes the sine of an argument, in degrees.
CALLING SEQUENCE: CALL SINX (A)
A - Argument, in degrees
ROUTINE NAME: SKFILE
DESCRIPTION: This routine advances a unit $N$ number of files.
CALLING SEQUENCE: CALL SKFILE (NUNIT, N)
NUNIT - Unit number
N - Number of files
REFERENCES: FINDST, STORE, QOMAIN
ROUTINE NAME: SORTDL
DESCRIPTION: This routine numerically sorts a doublet array within itself.
CALLING SEQUENCE: CALL SORTDL (IA, NA)
IA - Doublet arrayNA - Total number of elements
REFERENCES: QOMAIN, PLLOAD
ROUTINE NAME: SORTS
DESCRIPTION: This routine numerically sorts a singlet array.
CALLING SEQUENCE: CALL SORTS (A, JJ)
A - Singlet input array
JJ - Number of elements in the array

ROUTINE NAME: SPIN
DESCRIPTION: This routine is user-callable and allows the user to define the spin axis, spin rate, and start time.

CALLING SEQUENCE: CALL SPIN (CLOC, CON, RAT, ANGLE, TIMS)

CLOC - Clock angle locating spin axes
CON - Cone angle locating spin axes
RAT - Spin rate ANGLE - True anomaly angle to start spin TIMS - Start time of spin

REFERENCES: User's Operations Data block

ROUTINE NAME: STFAQ

## DESCRIPTION: This routine is user-called in the Operations Data block to generate a duplicate orbit point, given a true anomaly/ time and a step number to retrieve the data from.

GALLING SEQUENCE: CALL STFAQ (ANGLE, TTM, NST)
ANGLE - True anomaly the data are to be stored under TIM - Current orbital time data are to be stored under NST - Step number to retrieve data from

REFERENCES: Operations Data block (user-called)

FILES: SCRI, DI, TQ

ROU'TINE NAME: STORE
DESCRIPTION: This routine generates the header record on the required file. If the file has been rewound or read STORE repositions the file to the proper point.

CALLING SEQUENCE: CALL STORE (NUNIT, ISTEP, LABEL1, LABEL2)

NUNIT - Unit to write header on
ISTEP - Step number
LABELI - Identifier
LABEL2 - Identifier

REFERENCES: STFAQ, FFRDIN, SFROIN, DIEND, DIRDRQ, GBSCFA, AQMAIN

ROUTINE NAME: SUND
DESCRIPTION: This routine defines the parameters concerning the sun when the orbit defined includes the sun.

CALLING SEQUENCE: CALL SUND
KEY VARIABLES: PRAD - Planet radius
RSUN - Sun radius
WSUN - Sun temperature
PALB - Sun albedo factor (0.0)
WDS - Darkside temperature
WSS - Sun side temperature

REFERENCES: ORBIT1, ORBIT2

ROUTINE NAME: SYMBOL
DESCRIPTION: This routine generates Hollerith data on the plot frame. The sequence of characters is terminated by a (\$.).

CALLING SEQUENCE: CALL SYMBOL (A)
A. Array of Hollerith data

REFERENCES: NPMAIN, NPAXES, NPINFO, OPMAIN, OPAXES, OPINFO, OPVCS, PLGRID, PLSYMB

ROUTINE NAME: TAPELS
DESCRIPTION: This routine is user-callable to list a BCD file on unit BCDOU. Given the number of files, each is listed with a sequence starting at 10,000 until 1 EOF is read or NFILES pseudo end-of-files are read, where C\$END is treated as an end-of-file.

CALLING SEQUENCE: CALI TAPELS (NFILES)
NFILES - Number of pseudo end-of-files to be dumped

REFERENCES: User-called in the Operations Data block

## ROUTINE NAME: TPLOAD

# DESCRIPTION: This routine generates a binary tape containing all computed data at the current point under the configuration name NCFNM. The data are written in a multifile file on unit USER1. 

CALLING SEQUENCE: CALL TPLOAD (NCFNM)
NCFNM - Configuration name
REFERENCES: User-called in the Operations Data block

FILES: USER1

ROUTINE NAME: TRANSF
DESCRIPTION: This Ioutine combines the direction cosine matrices to generate a final $\mathrm{C}-\mathrm{S}$ and $\mathrm{S}-\mathrm{C}$ matrix.

CALLING SEQUENCE: CALL TRANSF (RMASS, TRANCB, BX, BY, BZ, TRANCS, TRANBS)

RMASS - Array of surface data
TRANCB - Direction cosine matrix central to block system
BX, BY, BZ - Block coordinate component vector TRANCS - Direction cosine matrix central to surface

REFERENCES: BUILDC, ADD

ROUTINE NAME: TRASYS
DESCRIPTION: This is the root segment defined by the preprocessor enabling the operations data to direct all logic flow.

CALLING SEQUENCE: CALL TRASYS

ROUTINE NAME: TRNSP

DESCRIPTION: This routine transposes matrix $A$ and stores the result in matrix $B$.

CALLING SEQUENCE: CALL TRNSP (A, B)
$A-$ Input matrix
$B-A^{T}$
ROUTINE NAME: URANUD
DESCRIPTION: This routine defines the parameters necessary to orbitUranus.
CALLING SEQUENCE: CALL URANUD
KEY VARIABLES: PRAD - P1anet radius
SOL - Solar constantPALB - Planet albedo factorWDS - Darkside temperatureWSS - Sun side temperatureGRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: VENUSD
DESCRIPTION: This routine defines the parameters necessary to orbitVenus.
CALLING SEQUENCE: CALL VENUSD
KEY VARIABLES: PRAD - Planet radiusSOL - Solar constantPALB - Albedo factorWDS - Darkside temperatureWSS - Sun side temperatureGRAV - Gravitational constant
REFERENCES: ORBIT1, ORBIT2
ROUTINE NAME: ZNPMAX
DESCRIPTION: This routine is called from the node plotter (NPLOT)and scales the nodes to be plotted.
CALLING SEQUENCE: ZNPMAX (NNP)
NNP - Number of surface/nodes to be selectively plotted
REFERENCES: NPMAIN, NPCONV
C. FILE DEFINITIONS - PROCESSOR LIBRARY

FILE NAME: BCDOU

PROGRAM VARIABLE NAMF: NBCDOU
UNIT' REFERENCE (UNIVAC/JSC): 29
PURPOSE: Ilhis file is the output tape for BCD data in the thermal analyzer input format.

SEGMENT REFERENCES: QOCAL (WRJTE)
RKCAL (WRLI'E)
RCCAL (WRITE)

FILE NAME: DI
PROGRAM VARIABLLE NAME: NDI
UNTT REFERENCF (UNIVAC/JSC): 10
PURPOSE: This file is for storage of solar, planetary, and albedo direct irradiation data.

SEGMENT REFERENCES: DICAI (WRITE)
RDCAL (WRITE)
AQCAL (READ)
PLO'T (READ)

FLLE iv $\Lambda M L$ : DTR
PROGRAM VARIABLE NAME: NDJR

UNLI REFERENCE (UNIVAC/JSC): 22
PURPOSE: This file is for storage of direct irradiation data input through the flux data block. It acts as a direct-irradiation restart file.

SEGMENT RFFFRENCES: DICAL (READ)
FILE NAME: ..... FF
PROGRAM VARIABLE NAME: ..... NFF
UNIT REFERENCE (UNIVAC/JSC): ..... 9
PURPOSE: This file is used to store form factor data.
SEGMENT REFERENCES: FFCAL (WRITE)GBCAL (READ)RBCAL (WRITE)
FILE NAME: ..... FFR
PROGRAM VARIABLE NAME: NFFR
UNIT REFERENCE (UNIVAC/JSC): ..... 21
PURPOSE: This file is used to store form factor data input through the form factor data blocks. It acts as a form factor restart file.
SEGMENT REFERENCES: FFCAL (READ)
FILE NAME: GBIR
PROGRAM VARIABLE NAME: NGBIR
UNIT REFERENCE (UNIVAC/JSC): ..... 11
PURPOSE: This file is for storage of infrared waveband gray-bodyfactor data.
SEGMENT REFERENCES: AQCAL (READ)
GBCAL (WRITE)ODPROG - Subroutine GBAPRX (WRITE)RCCAL (READ)

```
FILE NAME: GRIRK
PROIGRAN VARIABIF NANH: NGBLRR
UNIT REFLRENCF (UNIVAC/.ISC): 1'3
PuRPosE: This is tho corresponden+& data storage file.
SGGMEN'G RFEERPNOFS: ROCAI. (READ)
    RK(:AT, (REND)
    gr(OAL (READ)
FILE: NAME: GBOG
PROGRAM VARIABLE NAME: NGBSSO
UNIT REFLRENCE (UNIVAC/JSC): I.Z
PURIOGL: This file is; for stotage of solat-wavehand prav-body fartor
        data.
SBCMENT REFERENCFS: AOCAL (RLND)
                                    GBCAL (WRITE)
    ODPROG - Sulvoutine GBAFRX (WKITE)
```

FILE NAME: GHSOR
PROGRAM VARJABIJE NAME: NCBSOR
UNIT RFFERENCH (UNIVAC:/IS(:): ..... 24
PURPOSE: Jhis file is the solar gray-body fator restart filf.
GRGMENT REFBRENCES: Not currantly used.
FILE NAME: OU'TPU'I'
PROGRAM VARLABLE NAME: NOUT
UNI' REFERENCE (UNIVAC/.I:C): ..... 6
FURPOSE: $\therefore$ This is the print output file.
SEGMENT REFERENCES ..... All
FILE NAME: ..... PLS
PROGRAM VARIABLE NAME: NPLS
UNIT REFERENCE (UNIVAC/JSC): ..... 13
PURPOSE: This is used to store the spacecraft/planet form factor matrix and shadow factor data.
SEGMENT REFERENCES: DICAL (READ/WRITE)SFCAL (READ/WRITE)
FILE NAME: PLSR
PROGRAM VARIABLE NAME: NPLSR
UNIT REFERENCE (UNIVAC/JSC): ..... 25
PURPOSE: This file is the shadow-factor restart file.
SEGMENT REFERENCES: SFCAL (READ)
FILE NAME: PUNCH
PROGRAM VARIABLE NAME: NPUN
UNIT REFERENCE (UNIVAC/JSC): ..... 7
PURPOSE: This file is the punch output ..... file.
SEGMENT REFERENCES: DICAL (WRITE)FFCAL (WRITE)RCCAL (WRITE)
RKCAL (WRITE)
QOCAL (WRITE)
FILE NAME: RIO
PROGRAM VARIABLE NAME: ..... NRAN
UNIT REFERENCE (UNIVAC/JSC): ..... 8
PURPOSE: This file is the primary random access file, which is used to store all node and surface description data.
SEGMENT REFERENCES: DICAL (READ) NPLOT (READ) DRCAL (READ) OPLOT (READ) FFCAL (READ) RBCAL (READ)
FILE NAME: RSTRO
PROGRAM VARIABLE NAME: NRSO
UNIT REFERENCE (UNIVAC/JSC): ..... 15
PURPOSE: This file serves as the restart output tape.
SEGMENT REFERENCES: Not currently used. File name and unit reserved
FILE NAME: ..... RTO
PROGRAM VARIABLE NAME: NRTO
UNIT REFERENCE (UNIVAC/JSC): ..... 18
PURPOSE: This file is the temporary restart output tape.
SEGMENT REFERENCES: Not currently used. File name and unit reserved
FILE NAME: SHADO
PROGRAM VARIABLE NAME: NSHADO
UNIT REFERENCE (UNIVAC/JSC): ..... 28
PURPOSE: This file is the shadow-factor data output tape.SEGMENT REFERENCES: SFCAL (WRITE)
FILE NAME: SQNTL
PROGRAM VARIABLE NAME: NSQNTL
UNIT REFERENCE (UNIVAC/JSC): ..... 16
PURPOSE: This file contains pointers for the random access file, plus miscellaneous flags and quantities generated in the preprocessor for use by processor segments.
SEGMENT REFERENCES: RDPROG (READ)
FILE NAME: TAPE1
PROGRAM VARIABLE NAME: NSCRI
UNIT REFERENCE (UNIVAC/JSC): ..... 1
PURPOSE: This file is scratch file 1 . Scratch files are never used to pass information between segments.
SEGMENT REFERENCES: GBCAL (READ/WRITE)
RCCAL (READ/WRITE)
RKCAL (READ/WRITE)
FILE NAME: TAPE2
PROGRAM VARIABLE NAME: NSCR2
UNIT REFERENCE (UNIVAC/JSC): ..... 2
PURPOSE: This file is scratch file 2.
SEGMENT REFERENCES: GBCAL (READ/WRITE)
PLOT (READ/WRITE)
QOCAL (READ/WRITE)
FILE NAME: TAPE3
PROGRAM VARIABLE NAME: ..... NSCR3
UNIT REFERENCE (UNIVAC/JSC): ..... 3
PURPOSE: This file is scratch file 3.
SEGMENT REFERENCES: FFCAL (READ/WRITE)GBCAL (READ/WRITE)RCCAL (READ/WRITE)
FILE NAME: ..... TQ
PROGRAM VARIABLE NAME: ..... NTQ
UNIT REFERENCE (UNIVAC/JSC): ..... 14
PURPOSE: This file is used for storage of absorbed heat data.
SEGMENT REFERENCES: AQCAL (WRITE)QOCAL (READ)PLOT (READ)
FILE NAME: TQR
PROGRAM VARIABLE NAME: ..... NTQR
UNIT REFERENCE (UNIVAC/JSC): ..... 26
PURPOSE: This file is a restart file for absorbed heat data.
SEGMENT REFERENCES: Not currently used. Name and unit reserved
FILE NAME: TRAJPROGRAM VARIABLE NAME: NTRAJ
UNIT REFERENCE (UNIVAC/JSC): ..... 4
PURPOSE: This file is used to input trajectory tape data.
SEGMENT REFERENCES: ODPROG - Subroutine DITTP (READ)

FILE NAME: USER1

PROGRAM VARIABLE NAME: NUSER1
UNIT REFERENCE (UNIVAC/JSC): 19
PURPOSE: This is a scratch file reserved for the user.

SEGMENT REFERENCES: User option

FILE NAME: USER2
PROGRAM VARIABLE NAME: NUSER2

UNIT REFERENCE (UNIVAC/JSC): 20
PURPOSE: This is a scratch file reserved for the user.

SEGMENT REFERENCES: User option
D. VARIABLE DEFINITIONS - PROCESSOR LIBRARY

## LABELED COMMON /ALPH/

This common block contains an array of nodal absorptivities in the solar waveband.

ALPH - An array of solar absorptivities for active nodes

LABELED COMMON /AQQDP/
This common block provides a storage area in the AQPROG segment for incident planetary fluxes that are read in from the NDI file.

QDP - An array of incident planetary fluxes

LABELED COMMON /AQQDR/
This common block provides a storage area in the AQPROG segment for incident albedo fluxes that are read in from the NDI file.

QDR - An array of incident albedo fluxes

LABELED COMMON /AQQDS/
This common block provides a storage area in the AQPROG segment for incident solar fluxes that are read in from the NDI file.

QDS - An array of incident solar fluxes

LABELED COMMON /AQTEMP/
This common block provides temporary storage in the AQPROG segment for the node array, as read from the NDI file, for verifying correspondence data with the active model node array, NODE.

ITEMP - Temporary array of node numbers

LABELED COMMON /AREA/

This common block contains an array of the active model nodal areas.

AREA - An array of nodal areas

LABELED COMMON /AREAT/
This common block provides a temporary working and storage area for use in the QOPROG segment when combining nodal areas.

AREAT - An array of combined nodal areas

LABELED COMMON /ARRAYS/
This common block is set up by the preprocessor and contains user-input arrays from the Array Data block.

ADUMMY - Integer count of the first array
NAME1 - First user-input array
NAME1 (N) - Integer count of the second array
NAME2 - Second user-input array

LABELED COMMON /BCSN/
This common block contains all the user-input block coordinate system (BCS) names and/or the default BCS name, ALLBLK.

LABELED COMMON /BLKDIR/
This common block contains the block coordinate system directory.

NBLKDR (1, I) - Block coordinate system name
$\operatorname{NBLKDR}(2, I)$ - Length of the block data written on the random access record
NBLKDR (3, I) - Random access record number
NBLKDR (4, I) - Flag to indicate whether or not the BCS transformation data have been applied

This common block contains blocking information used by blank common to invert a matrix when calculating gray-body factors.
$\begin{aligned} & \text { NBLCK - } \text { Maximum number of blocks into which a matrix may be } \\ & \text { divided (set by a data statement in GBMAIN) } \\ & \text { NBUP - Minimum number of blocks in an upper triangular matrix, } \\ & \text { as determined by full utilization of blank common } \\ & \text { NBLO - } \begin{array}{l}\text { Minimum number of blocks in a lower triangular matrix, as } \\ \\ \\ \text { determined by full utilization of blank common }\end{array}\end{aligned}$

LABELED COMMON /CAL280/
This common block contains plotting information.

XC - The X-coordinate of the point to be plotted in the plotter coordinate system
YC - The Y-coordinate of the point to be plotted in the plotter coordinate system
IP - The index on a computed GO TO statement used in NPFPLT and OPFPLT

LABELED COMMON /CCONST/
This common block contains a collection of constants and variables used throughout the processor.

DIACC - Element selection accuracy factor for node-to-planet form factors
DIACCS - Element selection accuracy factor for direct flux shadowing calculations
DINOSH - Shadow/no shadow flag for direct flux calculations
DIPNCH - Direct flux punch flag
DTR - Conversion factor for degrees to radians
FFACC - Element selection accuracy factor for node-to-node form factor calculations
FFACCS - Element selection accuracy factor for form-factor shadowing calculations
FFMIN - Minimum form factor value to be saved. All form factors smaller than FFMIN are set to zero
FFNOSH - Shadow/no shadow flag for form-factor calculations
FFPNCH - Form-factor punch flag
FFPRNT - Form-factor print flag
FFRATL - Maximum allowable ratio of the maximum number of elements indicated on a node pair divided by the number of elements indicated by arithmetic averaging. If this ratio exceeds FFRATL, the two nodes are temporarily subdivided
GBWBND - Waveband definition for gray-body calculations
IAI - Step number indicating where the IR gray-body factor matrix is to be obtained for flux calculations using the ORBGEN option
IALBFL - Albedo flux compute/stuff flag
LAQGBI - Step number from which IR gray-body factors are to be obtained for absorbed-Q calculations
IAQGBS - Step number from which solar gray-body factors are to be obtained for absorbed-Q calculations
IAQSDA - Step number from which direct albedo fluxes are to be obtained for absorbed-Q calculations
IAQSDP - Step number from which direct planetary fluxes are to be obtained for absorbed-Q calculations
IAQSDS - Step number from which direct solar fluxes are to be obtained for absorbed-Q calculations
IAS - Step number indicating where the solar gray-body factor matrix is to be obtained for flux calculations uslng the ORBGEN option
IGBSFF - Step number from which form factors are to be obtained for use in gray-body calculations
IMESS - Starting address of the secondary MESS node array
IOVL - Index on a computed GO TO statement set in ODPROG and used in TRASYS. Ihis determines which segment is to be called
IQOARY - Array of step numbers where absorbed-Q data are stored
IQOCOR - Step number from which correspondence data are to be obtained

```
IQOTAB - Initial array number for the output Qs (= IQOTME + 1)
IQOTME - Output time array number
IPLAFL - Planetary flux compute/stuff flag
IRKCN - Initial radiation conductor number
IRKNGB - Step number from which gray-body factors are to be ob-
                tained for use in radiation conductor calculations
IRKNSP - Space node number
ISOLFL - Solar flux compute/stuff flag
ISPND - Starting address of the primary MESS node array
ITRALL - Not used
ITRCAO - Trace flag for the AQPROG segment
ITRCBO - Trace flag for the QOPROG segment
ITRCCO - Trace flag for the RBPROG segment (not used)
ITRCDO - Trace flag for the PLPROG segment
ITRC10 - Trace flag for routines FINDST and STORE
ITRC20 - Trace flag for BUILDC
ITRC30 - Trace flag for the FFPROG segment (not used)
ITRC40 - Trace flag for the SFPROG segment (not used)
ITRC50 - Trace flag for the NPPROG and RCPROG segments
ITRC60 - Trace flag used to print the original radiation conductors
    in the RCPROG segment
ITRC70 - Trace flag for the DIPROG segment
ITRC80 - Trace flag for the gray-body calculations
ITRC90 - Trace flag for the RKPROG segment
MAXBC - Length of blank common
NBCDSK - Not used
NBLKLN - Number of block coordinate systems in the model
NERN - Effective radiation node number
NMESS - Number of MESS node pairs
NN - Total number of nodes defined by BUILDC/ADD
NNOD - Number of active nodes in the model
NS - Total number of surfaces defined by BUILDC/ADD
NSFO - Configuration name to be used to identify the file when
writing the shadow-factor output tape (SHADO)
NSFT - Configuration name to identify the desired file on the
shadow-factor input tape (SHADI)
NSPND - Number of MESS node pairs plus the number of special nodes
NSSTEP - Sequence number of the current substep
NSTEP - Sequence number of the current step
NSTPL - Step number indicating where planetary fluxes are to be
        obtained for a planet-oriented case using the ORBGEN
        option
NSTSOL - Step number indicating where solar fluxes are to be ob-
        tained for a sun-oriented case using the ORBGEN option
NSURF - Number of active shadowing surfaces in the model
PI - The constant \pi
QOAMPF - Area multiplying factor for the output Qs
QOFMPF - Energy multiplying factor for the output Qs
QOPNCH - Flag to punch the output Qs
QORMPF - Not used
QOTAPE - Flag to write the output Qs on a BCD tape
```

```
QOTMPF - Time multiplying factor
QOTYPE - Flag to output the Q tables, the orbital average Q, or both
RALB - Multiplying factor for the absorbed albedo heat
RFRAC - Significant radiation fraction used in the RCPROG segment
RKAMPF - Area multiplying factor used in the RKPROG and RCPROG
                segments
RKMIN - Minimum value of \mathscr{F}/\varepsilon that will result in a valid radia-
    tion conductor
RKPNCH - Radiation conductor punch flag
RKSP - Flag for calculating radiation conductors to space
RKTAPE - Flag to write radiation conductors to the BCD tape
RPLAN - Multiplying factor for the absorbed planetary heat
RSOLAR - Multiplying factor for the absorbed solar heat
RTD - Conversion factor for radians to degrees
SIGMA - Stefan-Boltzmann constant
TRUANF - True anomaly of the final point in the orbit as defined
    using the ORBGEN option
TRUANI - True anomaly of the first point in the orbit as defined
using the ORBGEN option
```

LABELED COMMON /DIMS/

This common block contains an array of position vectors for shadowing surfaces.

DIMS - Position vector locating the origin of the shadowing-surface coordinate system in the central coordinate system

LABELED COMMON /DIRCT/

This common block contains the translation and rotation information relating a block coordinate system (BCS) to the central coordinate system (CCS), as well as a directory of random-access record numbers for the surfaces in the BCS.

DIRCT (1) - X-component of the translation vector
DIRCT (2) - Y-component of the translation vector
DIRCT (3) - Z-component of the translation vector
DIRCT (4) - Rotation about the CCS X-axis
DIRCT (5) - Rotation about the CCS Y-axis
DIRCT (6) - Rotation about the CCS Z-axis
DIRCT (7) -
DIRCT (8) - Order of rotation about the CCS X-, Y-, Z-axes,
DIRCT (9) - ) respectively
DIRCT (10)
$: \quad-\}$ Random-access record numbers

## LABELED COMMON /DISUR1/

This common block is used to store surface data read in from the random-access file in the DIPROG segment

| COMM1 | - Five 6-character words describing the surface |
| :---: | :---: |
| CSHDI | - Can-shade flag |
| DATAI | - Array of the five surface description parameters, ALPHA, BMIN, BMAX, GMIN, and GMAX |
| DTEI | - Date of the run |
| DUMI (16) | - Dummy array |
| ILKI | - Identifier for type of surface |
| INOD | - Can-be-shaded flag |
| KSI | - Sequence number of surface |
| NRMASS (1) | - Surface ID number |
| OLDAI | - Surface area |
| POSNI | - Position vector locating the center of the encompassing sphere in the CCS |

```
PROPI - Array of surface optical properties: solar absorptivity
        (ALPH), infrared emissivity (EMISS), infrared trans-
        missivity (TIR), and solar transmissivity (TSO)
RADI - Radius of the preshadowing sphere encompassing the
        surface
RXI - - Components of the position vector locating the origin of
RZI - the SCS in the CCS
SPRII - Specular reflectance of the surface in the IR waveband
SPRSI - Specular reflectance of the surface in the solar waveband
TRANI - Transformation Matrix relating the SCS to the CCS
LABELED COMMON /DRQDP/
This common block provides a storage area in the DRCAL segment for incident planetary fluxes that are read in from the NDI file.
QDP - An array of incident planetary fluxes
LABELED COMMON /DRQDR/
This common block provides a storage area in the DRPROG segment for incident albedo fluxes that are read in from the NDI file.
QDR - An array of incident albedo fluxes
LABELED COMMON /DRQDS/
This common block provides a storage area in the DRPROG segment for incident solar fluxes that are read in from the NDI file.
QDS - An array of incident solar fluxes
LABELED COMMON /DRSHDC/
This common block is used to store the sequence numbers of possible shadowing surfaces in the preshadowing calculations of segment DRCAL.
ISHAD - An array of sequence numbers of possible shadowing surfaces
```

This common block contains information used in calculating the incident solar flux on a node in the DRPROG segment.

FACT - Unshadowed solar flux on a node
Y - Square of the distance from the node to the sun
Z - Ratio of the solar constant to the node-to-sun distance

LABELED COMMON /DRSUR1/
This common block serves the same purpose in the DRPROG segment that DISURI serves in the DIPROG segment (see the DISURI description).

LABELED COMMON /DRTRAN/
This common block contains the matrix of direction cosines necessary to transform vectors defined in the planet-oriented vehicle coordinate system to vectors in the user-defined vehicle coordinate system.

PLDC - Transformation matrix

LABELED COMMON /DRTRSH/
This common block contains miscellaneous variables used to calculate incident fluxes in the DRPROG segment.

IN - Sequence number of the current node
NCHECK - Not used
NELT - Total number of elements used on the node
NSHAD - Number of possible shadowing surfaces
NSHADR - Not used
SFAVT - Temporary array of elemental surface area vectors
SFPVT - Temporary array of elemental surface position vectors
SHADS - Shadow factor
SUNPVT - Temporary sun position vector

This common block contains vector information for use in calculating incident fluxes in the DRPROG segment.

```
NEPT - Not used
NEST - Optimum number of elements used on the node
SUNPV - Sun position vector
SFAV - Array of elemental surface area vectors
SFPV - Array of elemental surface position vectors
```

LABELED COMMON /DSTORE/

This common block contains information used in storing and retrieving data from units assigned to TRASYS.

IDSTR (I, 1) - Unit identifier (NUNIT)
IDSTR (I, 2) - Number of files written to NUNIT
IDSTR ( $I$, 3) - Yes/no flag indicating whether or not the unit has been repositioned

LABELED COMMON /DSTR/
This common block contains surface description data for shadowing surfaces.

```
DSTR (1, I) - ALPHA
```

DSTR (2, I) - BMIN
DSTR (3, I) - BMAX
DSTR (4, I) - GMIN
DSTR (5, I) - GMAX

LABELED COMMON /EMISS/
This common block contains IR emissivities.
EMISS - Array of IR emissivities for the active nodes

LABELED COMMON /FA/

This common block contains one row of a symmetric matrix.
FA - Area-form factor product, or area-script $F$ product

LABELED COMMON /FFDATI/

This common block contains miscellaneous variables used in the FFCAL segment.

```
FANS - Unshadowed solar form factor
FENS - Unshadowed IR form factor
IABTME - Abort flag set when maximum number of elements per node
                is exceeded
ICALTP - Flag indicating whether the form factors came from cards,
                tape, were calculated, or were equivalenced
IEOFFR - End-of-file flag on unit NFFR
IN - Sequence number of the current "looker" node
JN - Sequence number of the current "lookee" node
KTAE - Not used
NEX - Flag to indicate when nodes have been divided into sub
                                nodes
TIMEE - Time at the beginning of the row calculation
TIMET - Time at the beginning of the form-factor calculations
TPER - Not used
```

LABELED COMMON / FFEQ/
This common block contains the master index for the random-access file (NSCR3) used in equivalenced form factors.

INDXF - Master index

LABELED COMMON /FFSHDC/
This common block serves the same purpose in the FFPROG segment as DRSHDC serves in the DRPROG segment (see the DRSHDC description).

LABELED COMMON /FFSUMC/

This common block contains form-factor sums.

SUM - An array of form-factor sums

```
LABELED COMMON /FFVALI/
This common block contains a row of IR area-form factor products.
FFVALI - IR area-form factor products
```


## LABELED COMMON /EEVALS/

```
This common block contains a row of solar area-form factor products.
FFVALS - Solar area-form factor products
LABELED COMMON /GBIR/
This common block contains a row of IR gray-body factors for use in the AQCAL segment.
GBIR - IR gray-body Eactors
LABELED COMMON /GBSO/
This common block contains a row of solar gray-body factors for use in the AQPROG segment.
GBSO - Solar gray-body factors
LABELED COMMON /IES/
This common block contains an array of sequence numbers for shadowing surfaces.
IFS - Shadowing-surface sequence numbers
LABELED COMMON /IKS /
This common block contains an array of surface-type identifiers for shadowing surfaces.
IKS - Type of shadowing surface
```


## LABELED COMMON /INDX/

This common block contains the master index for the random-access file NRAN.

INDX - Master index

LABELED COMMON /INDXN/
This common block contains an array of random-access record numbers for active nodes.

INDXN - Array of random-access record numbers for active nodes

LABELED COMMON /INDXS/
This common block contains an array of random-access record numbers for active surfaces.

INDXS - Array of random-access record numbers for active surfaces

LABELED COMMON /ISHAD/
This common block serves the same purpose in the DIPROG segment as DRSHDC serves in the DRPROG segment (see the DRSHDC description).

LABELED COMMON /ISPEC/
This common block contains an array of active specular-surface sequence numbers.

ISPEC - Array of sequence numbers of active specular surfaces

LABELED COMMON /ISPN/
This common block contains an array of primary MESS nodes and/or special nodes for use in the RCPROG segment.

ISPN - Array of primary MESS nodes and/or special nodes

LABELED COMMON /ISTPDR/

This common block contains a directory of user-assigned step numbers.

ISTPDR - Array of user-assigned step numbers

LABELED COMMON /JSURF/
This common block contains an array of all surface numbers defined by BUILDC/ADD.

JSURF - Array of surface numbers

LABELED COMMON /MNP/

This common block contains a list of selected nodes to be plotted in the NPPROG segment.

MNP - Array of selected node numbers to be plotted

LABELED COMMON /MSND/
This common block contains an array of secondary MESS node numbers for use in the RCPROG segment.

MSND - Array of secondary MESS node numbers

LABELED COMMON /MSP/
This common block contains a list of selected surfaces to be plotted in the OPPROG segment.

MSP - Array of selected surface numbers to be plotted

LABELED COMMON /NCONST/
This common block contains miscellaneous variables for use in the NPPROG segment.

ITITLE - Title to be written on each plot frame
KC - Flag indicating which view is to be plotted
KERR - Scaling error flag
NOMI Values to indicate the order of rotation of the plotter
NPHI - coordinate system through the angles OMI, PHI, and PSI,
NPSI respectively
OMI - Angle of rotation of the plotter coordinate system (PCS) about the X -axis
PHI - Angle of rotation of the PCS about the Z-axis
PSI - Angle of rotation of the PCS about the Y-axis
SCL - Scale factor for plotting
VROT - Transformation matrix of direction cosines resulting from the rotations PHI, PSI, and OMI. Transforms vectors in the PCS to the user-defined view

LABELED COMMON /NDS/
This common block is used in the RCPROG segment for temporarily storing node numbers.

NODET - Temporary node array

LABELED COMMON /NODE/
This common block contains an array of the active node numbers.
NODE - Array of active node numbers

LABELED COMMON /NOROLO/
This common block contains information pertinent to partitioning a lower triangular matrix for use in the GBPROG segment.

NLO (1, I) - Number of rows in block I
NLO (2, I) - Number of elements in block I

LABELED COMMON /NOROUP/
This common block contains information pertinent to partitioning an upper triangular matrix for use in the GBPROG segment.

NUP (1, I) - Number of rows in block $I$
NUP (2, I) - Number of elements in block I

LABELED COMMON /NPMASS/
This common block is used to store surface data read in from the random-access file in the NPPROG segment.

CC - Transformation matrix relating the SCS to the CCS
DATA - Array of the five surface description parameters, ALPHA, BMIN, BMAX, GMIN, and GMAX
ILK - Identifier for type of surface
RMASS - Dummy array of 11 words
$\begin{array}{ll}\mathrm{RX} & - \\ \mathrm{RY} & - \\ \text { Components of the position vector locating the origin of }\end{array}$
RZ -) the SCS in the CCS

LABELED COMMON /NSPEC/
This common block contains the number of active specular surfaces.

NSPEC - Number of active specular surfaces

LABELED COMMON /OCONST/
This common block serves the same purpose in the OPPROG segment as NCONST serves in the NPPROG segment (see the NCONST description), except for $S C L$ and the addition of two variables.

RPLN - Planet radius in plot frame dimensions
SCL - Maximum spacecraft dimension, measured from the CCS origin, in plot frame dimensions
SCLR - Orbit radius in plot frame dimensions

## LABELED COMMON /ODTEMP/

This common block provides a scratch array available to the programmer within any given segment.

ODTEMP - Scratch array dimensioned to the maximum of 100 and the total number of nodes input in the Surface Data block

## LABELED COMMON /OPMASS/

This common block serves the same purpose in the OPPROG segment as NPMASS serves in the NPPROG segment (see the NPMASS description)

LABELED COMMON /OPTRAN/
This common block contains variables used in the OPPROG segment.
S - Transformation matrix to locate the solar position vector in the plotter coordinate system
CTR - Transformation matrix to transform vectors in the CCS to vectors in the orbit coordinate system (OCS)
XV -
$\left.\begin{array}{ll}X V & - \\ Z V & -\end{array}\right\}$ Components of the vehicle position vector in the OCS

## LABELED COMMON /ORBIT/

This labeled common contains all variables associated with orbit definition and other orbit-associated parameters.

| ALAN | - Longitude of the ascending node |
| :---: | :---: |
| ASUN | - Not used |
| BETA | - Angle from the $Z_{0}$-axis of the orbit coordinate system to the sun vector (vertex at planet center) |
| CIGMA | - angle, in the orbital plane, from periapsis to the projection of the solar vector in the direction of the spacecraft's motion |
| CLOCK | - Clock angle to the spin vector |
| CONE | - Cone angle to the spin vector |
| DWP | - Subsolar planet emissive power, less the darkside emmissive power |
| ECC | - Orbit eccentricity |
| GRAV | - Planet gravitational constant |
| HA | - Altitude of apoapsis |
| HP | - Altitude of periapsis |
| ICALFL | - Not used |
| INSHAD | - Flag indicating whether the point is in or out of the planet shadow |
| IORBIT | $\begin{aligned} & \text { - Flag for type of orbit } \\ & =1 \text { Orbiting the planet } \\ & =2 \text { orbiting the sun } \end{aligned}$ |
| IORNT | $\begin{aligned} \text { - } & \text { Spacecraft orientation flag } \\ & =1 \text { Planet } \\ =2 & \text { Sun } \\ & =3 \text { Star } \\ & =4 \text { Tape } \end{aligned}$ |
| IROTX | - Order of performing rotation ROTX (1, 2, or 3) |
| IROTY | - Order of performing rotation ROTY (1, 2, or 3) |
| IROTZ | - Order of performing rotation ROTZ (1, 2, or 3) |
| ISFT | - Flag directing the use of shadow factor data |
| ISKPSO | - Not used |
| NSPFF | - Step number for storing the spacecraft-to-planet form factors |
| OINC | - Orbit inclination |
| ORNT | - Transformation matrix from the vehicle coordinate system to the central coordinate system |
| PALB | - Planet albedo (solar reflectivity) |
| PERIOD | - Orbital period |
| PLCL | - Clock angle-to-planet position vector (in the CCS) |
| PLCO | - Cone angle-to-planet position vector (in the CCS) |
| PlTYPE | - Spacecraft-planet form factor read/store flag |
| PNAME | - Name of planet being orbited |
| PRAD | - Planet radius |
| PSD | ```- Planet-sun distance (set to 1.0E + 15 for planetary orbits)``` |
| RATE | - Spin rate |

ROTX - Rotation about the X-axis from the VCS into the CCS
ROTY - Rotation about the Y-axis from the VCS into the CCS
ROTZ - Rotation about the Z-axis from the VCS into the CCS
RSUN - Radius of sun
RTHET - Geocentric altitude
SHADIN - True anomaly when entering the planet shadow
SHAOUT - True anomaly when leaving the planet shadow
SOL - Solar "constant"
SPINT - Transformation matrix from the CCS at zero spin time to

STRRA - the CCS at the current spin time
STRDEC - Declination of star
SUNCO - Cone angle to sun vector (in the CCS)
SUNCL - Clock angle to sun vector (in the CCS)
SUNDEC - Declination of the sun
SUNRA - Right ascension of the sun
TIMEPR - Current problem time
TIMEST - Time of periapsis passage
TIMSP - Time at which spinning begins
TRUEAN - Orbit true anomaly
WSS
WSUN - Subsolar emissive power of the planet

LABELED COMMON /PLANET/
This common block contains variables used to compute the planet/ spacecraft geometry relationship and the planet element breakdown.

ALB - Product of the planet radius and BETPM
ALG $=$ AREAPL/ALB
APEAPL - Area of the portion of the planet visible from the spacecraft
BETPM - Angular measurement from the subspacecraft point on the planet to the planet horizon, with the center of the planet as the vertex
$\mathrm{E}=(\mathrm{PRAD}+\mathrm{i}) * P R A D$ where:
PRAD $=$ Planet radius
$\mathrm{H}=$ Altitude of spacecraft
POSP - Components of a vector from the CCS origin to the center of the planet
RADP - Radius of a preshadowing sphere associated with a planet element
RADPJ - Array containing radii of the preshadowing spheres associated with each planet element

LABELED COMMON /PR/
A $2 x N S$ array containing the $I R$ and solar transmissivities associated with each surface.

PR (1, N) - IR Transmissivity of surface N
PR (2, N) - Solar transmissivity of surface $N$

LABELED COMMON /PSH/
A $4 x N S$ array containing data associated with the preshadowing sphere for each surface.

PSH (1, N) - Radius of the preshadowing sphere for surface $N$ PSH (2, N) -
PSH (3, N) - Components of the position vector to the center of
PSH (4, N) - ) the preshadowing sphere for surface $N$

LABELED COMMON /QAP/
This labeled common contains an array of absorbed planetary heat rates for each node.

QAP (N) - Absorbed planetary heat rate (energy/unit time) for node N

LABELED COMMON /QAR/
This labeled common contains an array of absorbed reflected (planetary albedo) heat rates for each node.

QAR (N) - Absorbed albedo heat rate (energy/unit time) for node $N$

LABELED COMMON /QAS/
This labeled common contains an array of absorbed solar heat rates for each node.

QAS (N) - Absorbed solar heat rate (energy/unit time) for node $N$

LABELED COMMON /PLOT/
This cormmon block contains arrays of information used in the NPPROG and OPPROG segments.

IOPNNP - An array that is functionally analogous to NPNNP for use in the OPPROG segment
IOPNV - Not used
IOPTIT - An array that is functionally analogous to NPTIT for use in the OPPROG segment
IOPVU - An array of views to be plotted in the OPPROG segment
NPNNP - An array of starting locations in labeled common ARRAYS for user-input arrays of selected nodes to be plotted in the NPPROG segment
NPTIT - An array of starting locations in labeled common ARRAYS for user-input title arrays that are to be written on plot frames in the NPPROG segment
NPVU - An array of views to be plotted in the NPPROG segment
OPROT - An array of user-input Euler angles for general views in the OPPROG segment
OPRPLN - An array of the desired plot sizes of the planet radius for use in the OPPROG segment
OPSCL - An array specifying the desired plot size for maximum spacecraft dimensions, as measured from the CCS origin for use in the OPPROG segment
OPSCLR - Ar array specifying the desired plot sizes of the orbit radius for use in the OPPROG segment
OPTIMP - An array of present times in the orbit used in conjunction with OPTIMS to calculate true anomalies in the OPPROG segment
OPTIMS - An array of perigee passage times for use in the OPPROG segment
OPTRUE - An array of true anomalies for use in the OPPROG segment ZNPROT - An array of user-input Euler angles for general views in the NPPROG segment
ZNPSCL - An array of scale factors for use in the NPPROG segment

## LABELED COMMON /PLOTTR/

This labeled common contains the variables, flags, and Hollerith title data for controlling data plot operations.

IPLNA - Array of node numbers for selective data plotting
IPLSN - Array of step numbers for selective data plotting
IPLUNT - Plot flag for type of data
PLCRVF - Yes-no flag for curve fitting data plots
PLLABX - X-axis plot label array
PLLABY - Y-axis plot label array
PLTITI - Plot label title 1
PLTIT2 - Plot label title 2
PLXMPF - Plot multiplying factor for X-axis
PLYMPF - Plot multiplying factor for Y-axis

LABELED COMMON /QAVERG/
This labeled common contains an array of orbital average absorbed total heat rates for each node.

QAVERG (N) - Average absorbed heat rate for node $N$

LABELED COMMON /QDP/
This labeled common contains an array of direct planetary heat fluxes for each node.

QDP (N) - Direct planetary heat flux (energy/unit time/unit area) for node N

## LABELED COMMON /QDR/

This labeled common contains an array of reflected (planetary albedo heat fluxes for each node.

LABELED COMMON /QDS/
This labeled common contains an array of solar heat fluxes for each node.

LABELED COMMON / QOCMB/
This labeled common contains an array used for working storage of correspondence data when combining absorbed-Q data for output.

ICOMB - a. An array of node numbers identical with the list on the right side of an equal sign in correspondence data
b. On the second pass of the combining logic, node numbers duplicated in the correspondence data are set negative

LABELED COMMON /QOFRST/
This labeled common contains an array of pointers that refer to node numbers duplicated in the correspondence data.

IFRST - An array of sequence numbers pointing to node numbers on the left side of equal signs in the correspondence data that are duplicated by node numbers on the right of any equal sign

LABELED COMMON /QONODT/
This labeled common contains a temporary-node-number array.
NODET - A temporary-node-number array used in node combining operations. Combine operations begin in a manner identical to those in the NODE (uncombined) array and end as a combined node array

## LABELED COMMON /RBDATI/

This common block serves the same purpose in the RBPROG segment that FFDAT1 serves in the FFPROG segment (see the FFDAT1 description).

## LABELED COMMON /RBFFVI/

This common block contains a row of IR area-form factor products that were read in from the NSCRI file or the NFFR file.

FFVALI - IR area-form factor products

LABELED COMMON /RBFFVS/
This common block contains a row of solar area-form factor products that were read in from the NSCRI file or the NFFR file.

FFVALS - Solar area-form factor products

This common block serves the same purpose in the RBPROG segment as DRSHDC serves in the DRPROG segment (see the DRSHDC description).

LABELED COMMONS /RBSURI/ and /RBSUR2/
These common blocks serve the same purpose in the RBPROG segment as DISUR1 serves in the DIPROG segment (see the DISUR1 description).

LABELED COMMON /RBVALI/
This common block contains a row of $I R$ area-image factor products. RBVALI - IR area-image factor products

LABELED COMMON /RBVALS/
This common block contains a row of solar area-image factor products.

RBVALS - Solar area-image factor products

LABELED COMMON /RKCMB/
This common block serves the same purpose in the RKPROG segment as QOCMB serves in the QOPROG segment (see the QOCMB description).

## LABELED COMMON /RKFRST/

This common block serves the same purpose in the RKPROG segment as QOFRST serves in the QOPROG segment (see the QDFRST description).

LABELED COMMON /RKNODT/
This common block serves the same purpose in the RKPROG segment as QONODT serves in the QOPROG segment (see the QONODT description).

LABELED COMMONS /RMASS1/ and /RMASS2/
These common blocks serve the same purpose in the FFPROG segment as DISURI serves in the DIPROG segment (see the DISUR1 description).

LABELED COMMON /RMASSM/
This common block serves the same purpose in the RBPROG segment as DISUR1 serves in the DIPROG segment (see the DISUR1 description).

This common block contains the random-access record numbers and record lengths that are passed from the preprocessor to the processor to enable the processor to access preprocessor-generated data from the random access file. These variables are used in the RDPROG segment to set up processor common blocks.

| NLAD | - The record length of the user array directory array |
| :---: | :---: |
| NLRIO | - The maximum number of records that can exist on the random $I / 0$ file |
| NRAND | - The random I/0 record number of the user array name directory array |
| NRAPD | - The random $I / 0$ record number of the user array position directory array |
| NRAV, NLAV | - The random $I / 0$ record number and the record length of the user array value array. Used to set up common ARRAYS |
| NRBCSD, NLECS | - The random $I / 0$ record number and the record length of the BCS directory |
| NRBCSN, NLBCS | - The random $I / 0$ record number and the record length of the BCS name array. Used to set up common BCSN |
| NRBCSR, NLBCS | - The random $I / 0$ record number and the record length of the BCS index. Used to set up common BLKDIR |
| NRCQD, NLCQD | - The random $I / O$ record number and the record length of the control constants directory array |
| NRCQV, NLCQV | - The random $I / 0$ record number and the record length of the control constants value array. Used to set up common CCONST |
| NRIN, NLIN | - The random $I / 0$ record number and the record length of the node index |
| NRIS, NLIS | - The random $I / O$ record number and the record length of the surface index |
| NRSD, NLSD | - The random $I / 0$ record number and the record length of the step directory. Used to set up common ISTPDR |
| NRT, NLT | - The random I/O record number and the record length for the title array. Used to set up common TITLE |
| NRTD, NLTD | - The random $1 / 0$ record number and the record length of the combined directory |
| NRUQD, NLUQD | - The random $I / 0$ record number and the record length of the user constant directory array |
| NRUQV, NLUQV | - The random $I / O$ record number and the record length of the user constant value array. Used to set up common UCONST |

## LABELED COMMON /SF/

```
This labeled common contains a storage array for script-F (gray-
body factor) data.
SF - An array used to store one row of script-F values during node-
    combining operations in the RKPROG segment
```

LABELED COMMON /SFS/
This labeled common contains a storage array for script-F data.
SFS - An array used to store one row of script-F values during node-combining operations in the RCPROG segment

LABELED COMMON /SFSHDC/
This labeled common used in the SFPROG segment in same manner as labeled common DRSHDC in DRPROG.

LABELED COMMON /SFQDP/
Not used

LABELED COMMON /SFQDR/
Not used

LABELED COMMON /SFQDS/
Not used

## LABELED COMMON /SFSUR1/

This labeled common contains the same variable names and is used identically with labeled common DISUR1.

## LABELED COMMON /SFVECC/

This labeled common concains variables used to define surface and planet elements used in shadow-factor tape calculations.

NEPT - Number of elements on the planet
NEST - Number of elements on the node
PLAV - planet-element area vector array ( 3 components in the CCS for each element)
PLPV - Planet-element position vector array
SFAV - Surface-element area vector array
SFPV - Surface-element position vector array
SUNPV - Sun position. Wector

LABELED COMMON /SPACE
This labeled common contains an array of script-F (gray-body) factors from each node to space.

LABELED COMMON /SPACNO/
This labeled common contans radiation conductor values from each combined node so space, and is used in the RKPROG segment.

## LABELED COMMON /SPCNO/

This labeled common, used in RCPROG, is exactly analogous to SPACNO.

LABELED COMMON /SREFLI/
This common block contains an array of surface IR specular reflectivities used in the DRPROG and RBPROG segments.

SREFLI - Array of IR specular reflectivities for active specular surfaces

LABELED COMMON /SREFLS/
This common block contains an array of surface solar specular reflectivities used in the DRPROG and RBPROG segments.

SREFLS - Array of solar specular reflectivities for active specular surfaces

LABELED COMMON /SRIR/
This common block contains an array of nodal IR specular reflectivities used in the DRPROG and the RBPROG segments.

SRIR - Array of IR specular reflectivities for active nodes

LABELED COMMON /SRSO/
This common block contains an array of nodal solar specular reflectivities used in the DRPROG and the RBPROG segments.

SRSO - Array of solar specular reflectivities for active nodes

LABELED COMMON /SUN/
This labeled common is identical to labeled common DRSUN.

LABELED COMMON /TAPE/
This labeled common contains all variable names for the processor library files (see Section III-C).

LABELED COMMON /TITLE/
This labeled common contains title information.
TITLE - Problem title input by the user
NTITLE - Title identifying the segment in the segment header printouts

```
LABELED COMMON /TRANS/
```

This labeled common contains a transformation matrix to transform planet-oriented vectors to the user-defined VCS.

PLDC - Transformation matrix used to transform vectors from a planet-centered coordinate system to the VCS

LABELED COMMON /TRASH/
This labeled common contains miscellaneous vector arrays and variables used in direct flux calculations.

IN - Current-node sequence number
NCHECK - Check flag to eliminate unnecessary calls to the preshadowing routine
NELT - Temporary storage address for the number of elements on a node during element optimization operations
NSHAD - Number of possible shadowing surfaces associated with a node
PLAVT - Temporary storage address for planet-element area vectors
PLPVT - Temporary storage address for planet-element position vectors
SFAVT - Temporary storage address for node-element area vectors
SFPVT - Temporary storage address for node-element position vectors
SUNPVT - Temporary storage address for the sun position vector

LABELED COMMON /TRIR/
This common block contains an array of nodal IR transmissivities.
TRIR - Array of IR transmissivities for active nodes

LABELED COMMON /TRSO/
This common block contains an array of nodal solar specular transmissivities.

TRSO - Array of solar transmissivities for active nodes

This common block contains an array of transformation matrices for shadowing surfaces.

TSTR - Array of transformation matrices relating the SCS coordinates of shadowing surfaces to the CCS

LABELED COMMON /UCONST/
This array contains user-defined constants that were input in the Quantities Data block.

LABELED COMMON /VARBL/
This common block contains variables used to calculate albedo and planetary fluxes in the DIPROG segment.

ALBF - Product of the solar constant and form factor from an insolated planetary element to the sun
PLNE - Emissive power of a planetary element

LABELED COMMON /VECTOR/
This labeled common contains the same variable names, used in the same way as those in labeled common SFVECC.

LABELED COMMON /XSPACE/

This labeled common contains a scratch array used to store one row of the inverted gray-body factor matrix.

BLANK COMMON

Blank common in the TRASYS processor is used as a scratch storage area in central memory.

