133 research outputs found

    Spatial scaling properties of coral reef benthic communities

    Get PDF
    The spatial structure of ecological communities on tropical coral reefs across seascapes and geographies have historically been poorly understood. Here we addressed this for the first time using spatially expansive and thematically resolved benthic community data collected around five uninhabited central Pacific oceanic islands, spanning 6° latitude and 17° longitude. Using towed-diver digital image surveys over ~140 linear km of shallow (8–20 m depth) tropical reef, we highlight the autocorrelated nature of coral reef seascapes. Benthic functional groups and hard coral morphologies displayed significant spatial clustering (positive autocorrelation) up to kilometre-scales around all islands, in some instances dominating entire sections of coastline. The scale and strength of these autocorrelation patterns showed differences across geographies, but patterns were more similar between islands in closer proximity and of a similar size. For example, crustose coralline algae (CCA) were clustered up to scales of 0.3 km at neighbouring Howland and Baker Islands and macroalgae were spatially clustered at scales up to ~3 km at both neighbouring Kingman Reef and Palmyra Atoll. Of all the functional groups, macroalgae had the highest levels of spatial clustering across geographies at the finest resolution of our data (100 m). There were several cases where the upper scale at which benthic community members showed evidence of spatial clustering correlated highly with the upper scales at which concurrent gradients in physical environmental drivers were spatially clustered. These correlations were stronger for surface wave energy than subsurface temperature (regardless of benthic group) and turf algae and CCA had the closest alignments in scale with wave energy across functional groups and geographies. Our findings suggest such physical drivers not only limit or promote the abundance of various benthic competitors on coral reefs, but also play a key role in governing their spatial scaling properties across seascapes

    Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns

    Get PDF
    Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra’s forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics

    Ecology of the Invasive Red Alga Gracilaria salicornia (Rhodophyta) on O'ahu, Hawai'i

    Get PDF
    The red alga Gracilaria salicornia (C. Agardh) E. Y. Dawson was introduced intentionally to two reefs on O'ahu, Hawai'i, in the 1970s for experimental aquaculture for the agar industry. Some 30 yr later, this species has spread from the initial sites of introduction and is now competing with native marine flora and fauna. The goals of this study were to quantify various aspects of G. salicornia ecology in Hawai'i in an effort to develop control or eradication tools. Experimental plots were established to determine cover and biomass of G. salicornia per square meter and to determine the amount of time and person hours needed to remove G. salicornia from these plots. Substantial amounts of G. salicornia become dislodged from the reef during large wave events and periodically become deposited onto the beach in front of the Waikiki Aquarium. Algal beach wash biomass was quantified and positive relationships were established between swell height and the amount of algae that washed up onto the beach in this location. We then quantified the ability of G. salicornia vegetative fragments to regrow after desiccation to determine if algal biomass stranded on shore survives the tidal cycle until being washed back out on the reef at high tide. Gracilaria salicornia was remarkably resistant to temperature, salinity, and chemical treatments examined as possible in situ control options. Herbivore preference tests showed that a native Gracilaria species is consumed far more frequently than the alien congener. Finally, large-scale community volunteer efforts were organized to remove drifting G. salicornia fragments from the reef area in front of the Waikiki Aquarium. Over 20,000 kg of alien algal fragments were removed from this location in five 4-hr cleanup events. However, based on G. salicornia growth rates, ability to fragment, physical tolerance, and low herbivory, it is clear that a large-scale dedicated effort will be needed to control this invasive species on Waikiki's reefs

    Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range

    Get PDF
    For broadly distributed, often overexploited species such as elasmobranchs (sharks and rays), conservation management would benefit from understanding how life history traits change in response to local environmental and ecological factors. However, fishing obfuscates this objective by causing complex and often mixed effects on the life histories of target species. Disentangling the many drivers of life history variability requires knowledge of elasmobranch populations in the absence of fishing, which is rarely available. Here, we describe the growth, maximum size, sex ratios, size at maturity, and offer a direct estimate of survival of an unfished population of grey reef sharks (Carcharhinus amblyrhynchos) using data from an eight year tag-recapture study. We then synthesized published information on the life history of C. amblyrhynchos from across its geographic range, and for the first time, we attempted to disentangle the contribution of fishing from geographic variation in an elasmobranch species. For Palmyra’s unfished C. amblyrhynchos population, the von Bertalanffy growth function (VBGF) growth coefficient k was 0.05 and asymptotic length L∞ was 163.3 cm total length (TL). Maximum size was 175.5 cm TL from a female shark, length at maturity was estimated at 116.7–123.2 cm TL for male sharks, maximum lifespan estimated from VBGF parameters was 18.1 years for both sexes combined, and annual survival was 0.74 year-1. Consistent with findings from studies on other elasmobranch species, we found significant intraspecific variability in reported life history traits of C. amblyrhynchos. However, contrary to what others have reported, we did not find consistent patterns in life history variability as a function of biogeography or fishing. Ultimately, the substantial, but not yet predictable variability in life history traits observed for C. amblyrhynchos across its geographic range suggests that regional management may be necessary to set sustainable harvest targets and to recover this and other shark species globally

    Resetting predator baselines in coral reef ecosystems

    Get PDF
    What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought

    Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease

    Get PDF
    Objective: Serum biomarkers may serve to predict early response to therapy, identify relapse, and facilitate drug development in inflammatory bowel disease (IBD). Biomarkers are particularly important in children, in whom achieving early remission and minimizing procedures are especially beneficial. Methods: We profiled protein and micro RNA (miRNA) in serum from patients pre- and post-therapy, to identify molecular markers of pharmacodynamic effect. Serum was obtained from children with IBD before and after treatment with either corticosteroids (prednisone; n=12) or anti-tumor necrosis factor-α biologic (infliximab; n=7). Over 1,100 serum proteins were assayed using aptamer-based SOMAscan proteomics, and 22 miRNAs analyzed by quantitative real time PCR. Concordance of longitudinal changes between the groups was used to identify markers responsive to treatment. Bioinformatic analysis was used to build insight into mechanisms of changes in response to treatment. Results: We identified 18 proteins and three miRNAs responsive to both prednisone and infliximab. Eight markers that decreased are associated with inflammation and have gene promoters regulated by nuclear factor (NF)-ÎșB. Several that increased are associated with resolving inflammation and tissue damage. We also identified six markers that appear to be steroid-specific, three of which have glucocorticoid receptor binding elements in their promoter region. Conclusions: Serum markers regulated by the inflammatory transcription factor NF-ÎșB are potential candidates for pharmacodynamic biomarkers that, if correlated with later outcomes like endoscopic or histologic healing, could be used to monitor treatment, optimize dosing, and enhance drug development. The pharmacodynamic biomarkers identified here hold potential to improve both clinical care and drug development. Further studies are warranted to investigate these markers as early predictors of response, or possibly surrogate outcomes

    Defining normal IgG changes throughout pregnancy

    Get PDF
    Immunoglobulin G (IgG) is the major serum immunoglobulin, accounting for roughly 75% of all immunoglobulin. IgG is the only class of immunoglobulin that crosses the placenta and it serves as the main immunologic barrier between the fetus and external environments. There has not been a clear consensus on what the normal values of IgG are throughout pregnancy. The aim of this study is to measure serum immunoglobulin G in each trimester of the pregnant female to determine a normal IgG profile throughout all trimesters in normal pregnancy
    • 

    corecore