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ABSTRACT
Kingman Reef and Palmyra Atoll in the central Pacific are among the most re-
mote coral reefs on the planet. Here we describe spatial patterns in their benthic
communities across reef habitats and depths, and consider these in the context of
oceanographic gradients. Benthic communities at both locations were dominated
by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose
coralline algae (CCA) (10–36%). While turf algae were relatively common at both
locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%)
and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity,
in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Al-
most exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides
indirect evidence of competitive exclusion, probably late in a successional sequence.
In contrast, the more exposed forereef habitats at both Kingman and Palmyra had
higher coral diversity and were characterized by fast-growing corals (e.g., Acropora
and Pocillopora), indicative of more dynamic environments. In general at both lo-
cations, soft coral cover increased with depth, likely reflecting increasingly efficient
heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely
due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda,
increased with depth. This likely reflects the ability of many calcifying macroalgae
to efficiently harvest light at deeper depths, in combination with an increased nu-
trient supply from upwelling promoting growth. At Palmyra, patterns of hard coral
cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On
Kingman’s forereef, benthic community composition was strongly related to wave
energy, with hard coral cover decreasing and becoming more spatially clustered with
increased wave energy, likely as a result of physical damage leading to patches of coral
in localized shelter. In contrast, the cover of turf algae at Kingman was positively
related to wave energy, reflecting their ability to rapidly colonize newly available
space. No significant patterns with wave energy were observed on Palmyra’s forereef,
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suggesting that a more detailed model is required to study biophysical coupling there.
Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to
explore biophysical influences on benthic ecology and dynamics.

Subjects Ecology, Marine Biology
Keywords Coral, Macroalgae, Zonation, Wave exposure, Kingman Reef, Palmyra Atoll, Spatial
clustering, Wave impacts, Benthic competition

INTRODUCTION
On many coral reefs, combinations of natural and anthropogenic forcings interact to

influence benthic dynamics (Grigg, 1995). For example, nutrient pollution can fuel

algal growth and influence competition between corals and algae for space (McCook,

1999), fishing removes key fish species, such as herbivores, that maintain algal standing

stocks (Jackson et al., 2001), and coastal development increases sedimentation, leading to

smothering and death of corals (Fabricius, 2005). While natural forcings are still present

(Hughes & Connell, 1999), their relative influence on benthic community dynamics

on a given reef may vary depending on the magnitude of anthropogenic disturbances

(Barott et al., 2012). These interactions make it challenging to discern the independent

effects of human-induced versus natural forcings on coral reef dynamics and community

organization.

Throughout the Pacific Ocean there are numerous remote islands and atolls (Maragos &

Williams, 2011). These remote reefs lack local human impacts and are often characterized

by high fish biomass (Williams et al., 2011c) and benthic communities dominated by

hard corals and other calcifying (reef-building) organisms (Sandin et al., 2008; Vroom et

al., 2010; Page-Albins et al., 2012). In the absence of local human impacts, intra-island

variation in reef community organization is likely a result of natural variations in

predation, competition for space, gradients in physical forcings such as light and wave

energy, and disturbance events, such as storms (Hughes, 1989; Rogers, 1993; Hughes &

Connell, 1999). For example, the decrease in irradiance with depth is a crucial factor

limiting the distribution of autotrophic organisms such as algae (Huston, 1985). The

distribution of scleractinian (stony) corals is also structured by depth, but the patterns

are often more complex (Done, 1983). Like algae, corals receive most of their energy from

photosynthesis via their symbiotic zooxanthellae (Muscatine & Porter, 1977), though most

colonies, particularly zooxanthellate soft corals, actively supplement themselves through

heterotrophy (Fabricius & Dommisse, 2000). Thus, corals have more trophic flexibility

than algae and are less constrained in their depth distributions. Particulate food supply

often increases with depth (i.e., with increased proximity to sources of upwelling), creating

a nutrient and energy-rich environment for coral growth (Leichter & Salvatore, 2006).

However, high oscillatory flow in the shallows may also supply a high flux of particulate

food and nutrients (Sebens & Johnson, 1991).
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Other physical forcings, such as wave energy gradients, also play a major role in species

zonation and benthic community organization on coral reefs (Bradbury & Young, 1981;

Done, 1983; Dollar & Tribble, 1993). Extreme wave energy in shallow waters may reduce

overall coral cover and favor communities dominated by more wave-tolerant growth

forms with greater structural integrity (Dollar, 1982; Madin & Connolly, 2006). These

communities may remain characterized by early colonizers, as repeated disturbances

prevent the establishment of a late-successional climax community (Grigg, 1983; Hughes &

Connell, 1999). Because algae are also vulnerable to physical dislodgement (Engelen et al.,

2005), these communities may also shift to more wave-tolerant species and morphologies,

such as encrusting and turf algae, with increased wave energy.

Kingman Reef and Palmyra Atoll, approximately 1300 km south of Hawaii in the

northern Line Islands, central Pacific, are among the most remote coral reefs on the planet.

These reefs represent a biodiversity hotspot in the central Pacific (Maragos & Williams,

2011), and previous expeditions have documented their high fish biomass and live coral

cover (Sandin et al., 2008; Friedlander et al., 2010; Kenyon, Maragos & Wilkinson, 2010)

and diverse algal assemblages (Tsuda, Fisher & Vroom, 2012). Kingman and Palmyra have

been protected as National Wildlife Refuges by the US Fish and Wildlife Service since 2000

and 2001, respectively. In 2009, both became part of the Pacific Remote Islands Marine

National Monument, further reinforcing their high-level conservation status (Kenyon,

Maragos & Vroom, 2012). Here, we use Kingman and Palmyra as case studies to shed

light on the natural history of benthic community patterns on remote oceanic reefs in

the Pacific. Our aim was to provide a comprehensive description of benthic community

patterns across reef habitats, depths and, in particular, across horizontal wave energy

gradients.

We first compare and contrast benthic communities between more sheltered and

environmentally stable reef habitats, to those habitats more exposed to open ocean

conditions and therefore punctuated disturbance events, such as large swells. Secondly, we

examine benthic community shifts in response to increases in depth; specifically, whether

relationships exist between depth and: (1) the cover of macroalgae (e.g., decrease in cover

with increases in depth following reduced light availability), (2) the cover of hard coral

(e.g., peak at intermediate depths where there is a balance between food availability and

levels of physical disturbance), and (3) the cover of soft corals (e.g., increase in cover

with depth due to increasingly efficient heterotrophic abilities). Lastly, we examine how

horizontal gradients in wave energy influence various aspects of benthic community

organization; specifically, whether relationships exist between wave energy and: (1) hard

coral cover (e.g., decrease in cover with increasing wave energy), (2) spatial clustering

of corals (e.g., higher clustering with increasing wave energy due to selection for more

wave-tolerant species in pockets of localized shelter), (3) algal cover (e.g., generally more

or less algae present in areas of higher wave energy), and (4) algal community structure

(e.g., more wave-tolerant morphologies with increasing wave energy).
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Figure 1 Map of survey sites. Location of Kingman Reef and Palmyra Atoll, northern Line Islands (A)
and the distribution of survey sites at Kingman in 2007 (B) and at Palmyra in 2010 (C). 05; indicate sites
at Kingman surveyed in 2005. Numbers in parentheses refer to the depths (m) surveyed within each reef
habitat.

MATERIALS AND METHODS
Study sites
Data were collected at Kingman Reef National Wildlife Refuge (NWR) (6.4 ◦ N, 162.4 ◦W)

in 2005 (Sandin et al., 2008) and 2007 and at Palmyra Atoll NWR (5.9 ◦ N, 162.1 ◦W) in

2010. Kingman and Palmyra are approximately 60 km apart and are the two northernmost

reefs in the Line Islands chain (Fig. 1). Kingman, lacking emergent vegetated dry land, is an

atoll reef, whereas Palmyra supports numerous vegetated islets and is a true atoll (hereafter,

both are called atolls) (Maragos & Williams, 2011). The reefs of Kingman and Palmyra

cover approximately 48 km2 and 52 km2, respectively (depth range= 30 m to shoreline).

Neither Kingman nor Palmyra has ever had a permanent resident human population.

During WWII-era temporary occupation by the US Navy on Palmyra several alterations

were made, including lagoon dredging and causeway construction that altered water flow

in and out of the lagoon and shifted patterns of coastal erosion and sedimentation (Collen,

Garton & Gardner, 2009). Palmyra’s lagoon is now heavily degraded, characterized by

high turbidity, sedimentation, and a benthos dominated by sponges, not corals (Knapp

et al., 2012) (Fig. 3H). Present-day direct human impacts at Palmyra are minimal to

non-existent; only a small team of scientific researchers and staff (4–20 people) are resident

at the on-island research station.
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Benthic community surveys
Study sites were chosen using a stratified random design within each of the major reef

habitats found at Kingman and Palmyra (Fig. 1). Although reef flats are present on both

atolls, their shallow and exposed nature made surveying them unsafe, thus no sampling

occurred here. To test the effect of habitat on benthic community patterns (while keeping

depth constant), surveys were conducted at 10 m depths across all three reef habitats found

at Kingman (patch reef, backreef, and forereef). Reef habitats at Palmyra varied greatly

in their depth ranges, confounding any explicit test of habitat. To test the effect of depth

(while keeping habitat constant), surveys were conducted at 5, 10 and 20 m on the forereef

at both Kingman and Palmyra. We also tested the effect of depth on the reef terrace at

Palmyra by surveying at 5 and 20 m; we did not obtain adequate replication at the 10 m

depth strata (n = 2) to include this information. Finally, we surveyed a unique shallow

(<3 m) backreef habitat in Palmyra’s northeast (Fig. 1). Along each transect, percent

cover of benthic organisms was calculated using a modification of the photoquadrat

method (Preskitt, Vroom & Smith, 2004). At Kingman, two 25 m transects (separated by

10 m) were placed on the benthos at each depth at each site, while at Palmyra a single

50 m transect was used. At Kingman, 10 photoquadrats were captured adjacent to the

transect line at fixed intervals, totaling 20 photoquadrats per site. At Palmyra, the number

varied spatially but generally equaled 10–20 photoquadrats at fixed intervals along each

transect (Table S1). Each photograph captured an area of 0.54 m2 in 2005 and 0.63 m2 in

2007 and 2010. Image analysis was completed using Photogrid 1.0. One hundred points

were placed over each photograph in a stratified random design. Organisms under each

point were identified to the genus level, with some categories later combined in order

to standardize suspected variations in taxonomic identification (e.g., the zooxanthellate

soft corals Cladiella, Lobophytum, and Sinularia were combined into “leather coral”).

Turf algae (including the “epilithic algal matrix”) were defined as a mixed community

of filamentous algae and cyanobacteria generally less than 2 cm tall. Crustose coralline

algae (CCA; multiple genera) were identified to functional group. Calcified macroalgae

were separated from fleshy macroalgae by the presence of calcium carbonate (CaCO3);

all taxa that contained CaCO3 were considered calcified (these were principally species of

Halimeda and Peyssonnelia). All benthic organisms that produce calcium carbonate were

combined to define total calcified cover. Raw percent cover data for all habitats and depth

strata are reported in Table S1.

Wave energy
We consider the effects of wave energy by comparing spatial patterns of benthic

communities across horizontal gradients in wave power, calculated as:

ρg2

64π
Hs

2Tp

where ρ is the density of seawater (1024 kg m−3), g is the acceleration of gravity

(9.8 m s−2), Hs is mean significant wave height (m), and Tp is the dominant wave
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period(s). To quantify wave energy (kW/m), we used NOAA’s Wave Watch III (WWIII;

http://polar.ncep.noaa.gov/waves); a global, full-spectral wave model. A 1◦ spatial

resolution, 3 h output of mean significant wave height (average of 1/3 largest wave

heights), dominant period (time between two consecutive wave crests or troughs), and

direction (Dp; degrees north from which the waves are traveling) from January 1997 –

March 2010 was used. Kingman and Palmyra were divided into 16 discrete 22.5◦ sectors

(each 90◦ segment subdivided into four). Long-term climatological means in wave energy

were calculated by averaging all 3 h time steps over the entire time series for each sector.

Because wave energy standard deviation was highly correlated with the mean (r = 93.3%),

it was not included as an independent predictor in the analyses. The WWIII model output

reflects deep-water wave energy, not a direct measurement of wave stress across different

habitats and depths. Because previous research has shown a strong linear relationship

between deep-water offshore waves and wave-induced currents on reef-ecosystems (Hearn,

1999), this method is a good first-order approximation of wave forcing on coral reefs. To

test for horizontal changes in wave energy, not changes as a direct result of changes in depth

or habitat type, we limit comparisons of wave energy to forereef benthic communities at

10 m.

Statistics
Patterns of benthic communities were investigated at three taxonomic resolutions:

(1) percent cover of calcified versus non-calcified (fleshy) organisms, (2) percent cover

of major functional groups (hard coral, soft coral, CCA, other calcified macroalgae,

fleshy macroalgae, other), and (3) percent cover of genera. All analyses were performed

using R 2.15.1 (R Development Core Team, http://www.r-project.org) unless otherwise

stated. We used a permutational multivariate analysis of variance (PERMANOVA)

(Anderson, 2001) using the adonis function (vegan package) to test the effect of reef

habitat and depth, and all subsequent pairwise comparisons within each factor. Results

of each PERMANOVA were visualized with a canonical analysis of principal coordinates

(CAP) based on a discriminant analysis (Anderson & Willis, 2003) using the CAPdiscrim

function (BiodiversityR package). Individual variables that might be responsible for any

group differences in the CAP analysis were investigated by calculating Spearman’s Rank

correlations of the canonical ordination axes with the original variables. Variables with

strong correlations (in this study,≥0.4) were identified as “indicator genera” (i.e., driving

group separation in multivariate space). Indicator genera need not be the most dominant

(i.e. the organisms with the highest overall percent cover), but instead are those organisms

contributing most to within-group similarity, while simultaneously contributing most

to between-group dissimilarity. We provide the “allocation success” results for each CAP

analysis in Table S2. Allocation success (expressed as a percentage) gives a measure of how

distinct a group is relative to all other groups (with group defined as a level within a factor;

e.g., the level forereef within the factor reef habitat). Allocation success indicated a more

distinct group than expected by chance alone when values exceeded 100/n, with n being

the number of a priori defined groups. All PERMANOVA and CAP analyses were based on

10 000 random permutations of the raw data.
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To quantify the proportion of variation in benthic communities explained by horizontal

gradients in wave energy, we used a permutational distance-based multivariate linear

model (McArdle & Anderson, 2001) using the Fortran program DisTLM foward (Anderson,

2003). To better explore the relationships between benthic communities and wave energy

on the forereef at each atoll, we calculated univariate regression models for major

functional groups and individual indicator genera that dominated the benthos. These

univariate models should be considered more like data exploration, unlike the formal

hypothesis testing of the multivariate analyses.

Finally, the spatial clustering of benthic taxa was calculated using dispersion-based

weighting (Clarke et al., 2006), which measures deviations of the response variable

(e.g., hard coral cover) from a generalized Poisson distribution using a test by permutation

(1000 random permutations of the raw data). This approach is robust to flexible rules of

clustering behaviour, as may be exhibited by hard coral communities, and for data not

displaying a normal distribution, such as the percent cover data used in this study (Clarke

et al., 2006). The clustering measure is given by the D statistic (variance to mean ratio),

with higher values representing higher levels of spatial clustering (Clarke et al., 2006).

Values of D were determined at the site level, with individual quadrats within any given site

acting as the units of replication.

RESULTS
Reef habitats at Kingman and Palmyra
Kingman’s lagoon was generally deep (>30 m) and contained numerous patch reefs

50–200 m in diameter, extending 2–10 m from the surface (Figs. 2A–2D and 4A).

Kingman’s backreef slopes were steep (30–50◦ inclination) and extended beyond 30 m

depth in many places before merging with the lagoon floor (Figs. 2E–2F and 4A).

Kingman’s forereefs in the north and south gradually sloped for approximately 30–60 m

out from the reef crest before dropping off sharply beyond 20 m depth (Figs. 2G–2H

and 4A).

Palmyra’s reef habitats included elongated reef terraces in the west and east. The

shallow (<5 m) portion of the western terrace (Figs. 3A–3B) merged with lagoon flats

to the east and gradually sloped to the west for approximately 4–5 km before becoming

a deeper (>20 m) sloping terrace habitat (Fig. 3C) and dropping off sharply beyond

30 m depth (Fig. 4B). In the far east, the shallow terrace habitat was extremely exposed,

and quantitative surveys were not possible. Qualitatively, the shallow eastern terrace was

dominated by sand, with sparse patches of coral. Within approximately 5 km east of this

sand zone, the eastern terrace reached depths of 20 m before dropping off sharply beyond

30 m depth. Forereef habitats along the north and south coasts of Palmyra (Figs. 3D–3F)

merged with the deeper terrace habitats at their western and eastern extremities. Forereef

steepness varied, but generally a sharp dropoff occurred at 30 m depth (Fig. 4C). Shallow

(<1 m) lagoon flats ran along the north and south shores of Palmyra, often merging

with the reef crest (Fig. 4C); thus, true backreef habitats were restricted to the northeast

(Figs. 1C and 3G) and were not comparable to Kingman’s backreef.
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Figure 2 Reef habitats at Kingman Reef. (A, B) Lagoonal patch reef dominated by massive and branch-
ing Porites. The shallow areas (<5 m) of the patch reefs are dominated by mushroom corals (Fungia) and
giant clams (Tridacna) (C, D). The exposed shallow (<5 m) (E) and the deeper backreef (10 m) (F) have
a steep slope incline (30–50◦). Kingman’s forereef habitat, where plating and branching Acropora corals
dominate at 10 m (G) and massive Porites characterize the deeper depths (H). Photo credits: ES (A–C, E,
G, H), JES (D), GJW (F).
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Figure 3 Reef habitats at Palmyra Atoll. Palmyra’s shallow (<5 m) western reef terrace (A–B) gradually
slopes to merge with a deep terrace habitat dominated by massive Porites and soft corals at 20 m (C).
Palmyra’s forereef habitats generally have a steep incline and are dominated by corymbose Pocillopora
corals and massive Porites (D–F). The only true backreef at Palmyra is located in the northeast (G). This
shallow habitat (<3 m) boasts the highest cover of hard coral on the atoll and is in stark contrast to the
heavily degraded lagoon habitat (H). Photo credits: Franklin Viola (A, C, G), GJW (B, H), Zafer Kizilkaya
(D–F).
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Figure 4 Stylized reef profiles from the two atolls. Reef profiles for Kingman and Palmyra showing
changes in percent cover of major benthic functional groups for: the transition from the lagoonal patch
reef, across the backreef, and across forereef depths at Kingman (A), the transition from the shallow to
the deeper reef terrace at Palmyra (B), and across forereef depths and the unique northeast backreef at
Palmyra (C). Dominant hard coral genera (two most abundant in terms of percent cover in rank order)
are indicated across habitats and depths in italics. Dashed lines indicate the position and direction of the
cross-sectional profile.
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Table 1 Summary statistics of within-island variations in benthic communities at three taxonomic resolutions at Kingman Reef and Palmyra
Atoll.

Island Taxonomic resolution Factor Depth strata (m) Pseudo-F P-value Pairwise comparisons

Kingman Calcified vs. non-calcified Reef habitat 10 6.54392,17 0.0005 P F | B

Forereef depth strata 5, 10, 20 5.13522,16 0.022 10 | 20

Functional group Reef habitat 10 8.04822,17 0.0001 P | B | F

Forereef depth strata 5, 10, 20 8.89702,16 0.0001 5 | 10 | 20

Genus Reef habitat 10 10.5682,17 0.0001 P | B | F

Forereef depth strata 5, 10, 20 5.74452,16 0.0001 5 | 10 | 20

Palmyra Calcified vs. non-calcified Terrace depth strata 5, 20 11.9431,13 0.0043 NA

Forereef depth strata 5, 10, 20 1.09182,31 0.3508 ns

Functional group Terrace depth strata 5, 20 8.28581,13 0.0011 NA

Forereef depth strata 5, 10, 20 2.76782,31 0.0061 5 | 20

Genus Terrace depth strata 5, 20 14.0571,13 0.0011 NA

Forereef depth strata 5, 10, 20 2.57562,31 0.0024 5 10 | 20

Notes.
Results of permutational multivariate analysis of variance analyses; | indicates significant differences between groups in pairwise comparisons; ns, non-significant; NA,
pairwise comparison not applicable due to only two groups.
Degrees of freedom for each test are shown as subscripts for each respective Pseudo-F value.

Overall functional group cover
At Kingman, across all reef habitats and depths, mean hard coral cover was 42%, crustose

coralline algae (CCA) 22%, other calcified macroalgae 8%, soft coral 6%, fleshy macroalgae

0.7%, and turf algae 12%. At Palmyra, excluding the northeast backreef habitat, mean

hard coral cover was 29%, CCA 24%, other calcified macroalgae 14%, soft coral 7%, fleshy

macroalgae 5%, and turf algae 19%. Mean hard coral cover at Palmyra’s northeast backreef

was 76%, the highest of any habitat surveyed at the two atolls (Fig. 4C). The mean cover

of calcified organisms (sum of hard coral, CCA, other calcified macroalgae, and other

calcified invertebrates) was 74% at Kingman (range = 54–86%) and 67% at Palmyra

(range= 56–77%) (Table S1).

Benthic community patterns across reef habitats
At Kingman, benthic communities differed across reef habitats at 10 m at all three

taxonomic resolutions (Table 1, Table S2). The patch reef and forereef were characterized

by a higher cover of calcified organisms, particularly hard coral, than the backreef, which

had a higher cover of turf algae (Fig. 4A). At the genus level, the patch reef and backreef

were dominated by Porites, which composed ≥80% of the hard coral cover present in

both habitats (Table 2). In contrast, on the forereef, the coral communities were more

diverse, with a greater number of genera contributing to overall hard coral cover. Acropora

and Pocillopora dominated the forereef habitat and together with Porites and Montipora

composed>80% of the hard coral cover present (Table 2).

Indicator genera driving separation among Kingman’s reef habitats included a range of

functional groups (Fig. 5A). On patch reefs, the coral Porites both dominated in percent

cover and was the strongest indictor genera of this habitat (Fig. 5A). Other indicator

genera on patch reefs were Fungia corals, the giant clam Tridacna, and the fleshy macroalga
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Table 2 Abundance (mean percent cover) of the top 10 hard corals across reef habitats (patch reef, backreef and forereef) and forereef depths
(5, 10, 20 m) at Kingman Reef. The relative contribution of each genus to overall hard coral cover is shown (Rel). Corals in bold make up ≥50% of
overall hard coral cover. For complete cover values for all hard coral genera see Table S1.

Forereef

Patch Reef - 10 m Backreef - 10 m 5 m 10 m 20 m

Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel

Porites 50.6 88.5 Porites 20.7 79.6 Acropora 13.7 37.1 Acropora 25.2 44.8 Porites 10.7 33.0

Fungia 3.2 5.6 Fungia 1.3 5.0 Pocillopora 8.0 21.7 Pocillopora 9.5 16.9 Favia 6.0 18.5

Favia 1.3 2.3 Acropora 1.2 4.6 Porites 5.0 13.6 Porites 7.3 13.0 Pocillopora 3.8 11.7

Pocillopora 0.9 1.6 Favia 1.0 3.8 Montipora 3.7 10.0 Montipora 5.7 10.1 Acropora 3.0 9.3

Pavona 0.5 0.9 Turbinaria 0.9 3.5 Pavona 2.1 5.7 Pavona 2.3 4.1 Lobophyllia 2.5 7.7

Montipora 0.3 0.5 Montipora 0.4 1.5 Favia 1.2 3.3 Favia 2.3 4.1 Pavona 1.1 3.4

Stylophora 0.2 0.3 Herpolitha 0.1 0.4 Leptastrea 1.0 2.7 Hydnophora 1.3 2.3 Montipora 0.9 2.8

Astreopora 0.03 0.1 Pavona 0.1 0.4 Montastrea 1.0 2.7 Stylophora 0.6 1.1 Platygyra 0.8 2.5

Platygyra 0.03 0.1 Favites 0.09 0.3 Favites 0.5 1.4 Favites 0.6 1.1 Fungia 0.7 2.2

Montastrea 0.02 0.0 Astreopora 0.04 0.2 Hydnophora 0.3 0.8 Platygyra 0.3 0.5 Leptastrea 0.5 1.5

Avrainvillea (Fig. 5A). While the overall cover of Avrainvillea was low (Table S1), the

rare nature of this alga made it a particularly strong discriminating species between reef

habitats. On the backreef, although Porites was the most dominant coral, it was not a

strong indicator distinguishing this habitat. Indicative genera on the backreef were turf

algae, sand, the calcifying macroalga Halimeda, and the hard coral Turbinaria (Fig. 5A).

Finally, on the forereef, three of the four most abundant corals (Acropora, Pocillopora, and

Montipora) were also strong indicator genera for this habitat (Fig. 5A). Other indicator

genera on the forereef included the calcifying macroalga Peyssonnelia, the fleshy macroalga

Dictyosphaeria, leather corals, and the hard corals Pavona, Montastrea, Lobophyllia, Favites,

and Hydnophora (Fig. 5A).

Benthic community patterns across depths
At Kingman, benthic communities differed across forereef depths, particularly at the

functional group and genus level (Table 1, Table S2). Hard coral cover peaked at mid

depths (10 m), CCA decreased with depth, other calcifying macroalgae increased with

depth, and soft coral and turf algae peaked at deeper (20 m) depths (Fig. 4A). At 5 and

10 m, Acropora and Pocillopora dominated, representing>50% of hard coral cover at these

depths (Table 2). At 20 m, Porites and Favia were the dominant corals (Table 2).

Indicator taxa driving separation among forereef depths on Kingman included a range

of functional groups (Fig. 5B). In addition to high CCA cover, shallow depths were

characterized by the giant clam Tridacna, the hard coral Pavona, and the hydrozoan fire

coral Millepora. The corals Acropora and Pocillopora both had high percent cover values

at these depths, and together with Montipora, were strong indicators for shallow and

mid-depths (Fig. 5B). At 20 m, the increase in calcified macroalgae cover was strongly

driven by Halimeda, and the increase in soft coral cover was driven by leather corals and
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Figure 5 Canonical plots. Canonical analysis of principal coordinates (CAP) based on a discriminant
analysis, showing those benthic genera responsible for separation across reef habitats at Kingman (A)
and across forereef depths on Kingman (B) and Palmyra (C). The squared canonical correlation value for
the first two ordination axes is shown in parentheses in each case. Vector lines represent Spearman’s Rank
correlations (threshold set at ≤0.4). The length of each vector line is proportional to the strength of the
correlation. CCA, crustose coralline algae; Pachy/Stereo, Pachyclavularia/Stereonephthya.

Pachyclavularia/Stereonephthya (Fig. 5B). Turf algae were also characteristic of the 20 m

depth strata. Characteristic hard corals at 20 m, in addition to the two most abundant

(Porites and Favia), were Fungia, Lobophyllia, Platygyra, and Herpolitha (Fig. 5B).

On Palmyra’s reef terrace, benthic communities differed between shallow and deeper

depths (Table 1, Table S2). Hard coral, CCA, and fleshy macroalgae (particularly

Lobophora) characterized the shallows, while soft corals and other calcified macroalgae,

particularly Peyssonnelia, were indicative of deeper depths (Fig. 4B, Table S1). At 5 m,

Montipora dominated and represented 71% of the hard coral cover present. Montipora

and Acropora together composed >80% of the hard coral cover on the shallow terrace

(Table 3). At 20 m, Porites dominated and represented 67% of the hard coral cover present.

Williams et al. (2013), PeerJ, DOI 10.7717/peerj.81 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.81
http://dx.doi.org/10.7717/peerj.81
http://dx.doi.org/10.7717/peerj.81
http://dx.doi.org/10.7717/peerj.81
http://dx.doi.org/10.7717/peerj.81


Table 3 Abundance (mean percent cover) of the top 10 hard corals across reef habitats (terrace and forereef) and depths (5, 10, 20 m) at Palmyra
Atoll. The relative contribution of each genus to overall hard coral cover is shown (Rel). Genera in bold make up ≥50% of overall hard coral cover.
For complete cover values for all hard coral genera see Table S1.

Terrace Forereef

5 m 20 m 5 m 10 m 20 m

Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel Genus Mean
cover

Rel

Montipora 34.4 70.9 Porites 21.0 67.3 Pocillopora 6.2 30.8 Pocillopora 6.3 25.9 Porites 7.2 32.0

Acropora 6.7 13.8 Pocillopora 2.6 8.4 Porites 3.8 18.9 Porites 5.0 20.6 Pocillopora 2.8 12.4

Psammocora 2.8 5.8 Turbinaria 2.5 8.0 Montipora 2.4 11.9 Montipora 3.2 13.2 Pavona 2.2 9.8

Pocillopora 2.4 4.9 Montipora 1.8 5.8 Pavona 1.7 8.5 Pavona 2.5 10.3 Favia 2.1 9.3

Astreopora 1.0 2.1 Favia 1.1 3.5 Favia 1.3 6.5 Favia 2.3 9.5 Turbinaria 1.9 8.4

Pavona 0.7 1.4 Pavona 0.7 2.2 Favites 1.1 5.5 Hydnophora 1.0 4.1 Montipora 1.6 7.1

Favia 0.3 0.6 Favites 0.5 1.6 Acropora 1.1 5.5 Lobophyllia 0.9 3.7 Hydnophora 1.0 4.4

Porites 0.1 0.2 Montastrea 0.3 1.0 Montastrea 1.0 5.0 Turbinaria 0.7 2.9 Favites 0.7 3.1

Stylophora 0.08 0.2 Leptastrea 0.2 0.6 Leptastrea 0.6 3.0 Montastrea 0.6 2.5 Fungia 0.5 2.2

Fungia 0.07 0.1 Acropora 0.2 0.6 Turbinaria 0.4 2.0 Favites 0.5 2.1 Acropora 0.5 2.2

In conjunction with Pocillopora and Turbinaria, these three genera composed>80% of the

hard coral cover present on Palmyra’s deep terrace (Table 3).

On Palmyra’s forereef, the overall cover of calcified and non-calcified organisms did

not vary across depths (Table 1), but the communities comprising each of the two groups

changed. Hard coral and turf algae cover was similar across depths andthe cover of fleshy

macroalgae peaked in the shallows. CCA cover progressively decreased with depth, while

the cover of other calcified macroalgae (particularly Peyssonnelia) and soft corals increased

with depth (Fig. 4C). The hard coral community was generally dominated by Pocillopora

and Porites, which together with Montipora and Pavona composed>50% of the hard coral

cover at each forereef depth (Table 3). The hard coral community on the forereef was more

diverse than on the reef terrace, with six to seven genera comprising 80% of the hard coral

cover across forereef depths (Table 3).

The hard corals Pocillopora and Montastrea, together with the fleshy macroalgae

Caulerpa and Lobophora, were indicative of shallow to mid depths, with Lobophora

particularly indicative of shallow depths (Fig. 5C). The most abundant hard corals at 20 m

(Porites, Pocillopora, and Pavona) were not strong indicators for this deeper depth. Instead,

the hard corals Psammocora and Leptoseris, and corals within the family Fungiidae (Fungia,

Herpolitha, and Halomitra), were characteristic of 20 m depths on Palmyra’s forereef

(Fig. 5C).

Horizontal wave energy gradients
Kingman and Palmyra experience similar wave forcing conditions, with high wave

energy (40–60 kW/m) from the north and northwest (292.5–360◦); moderate energy

(20–30 kW/m) from the south, west, and northeast (180–292.5◦ and 0–90◦); and low

energy (<20 kW/m) from the southeast (90–157.5◦) (Fig. 6A). Over the 13+ year data
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Figure 6 Wave energy plots for Kingman and Palmyra. Mean wave power at Kingman and Palmyra in
kW/m calculated for 16 discrete sectors, each spanning 22.5◦ starting from 0◦. Power calculated using
significant wave height, dominant period and direction from NOAA’s Wave Watch III, a 3 h interval,
1◦ spatial resolution wave model from January 1997 – March 2010 (A). Numbers in italics represent wave
energy values in kW/m. Wave event frequency (B) is the number of wave events (3 h output values) in
each 22.5◦ sector divided by the total number of events over the 13+ year time period. Values in italics
represent the fraction of waves.
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record, 62% of all incident waves were within the 45–90◦ sectors (largest sector value of

32.1%; Fig. 6B). Waves from the north and northwest accounted for 18% of all incoming

waves (largest sector value of 12.2%), while all other sectors accounted for<20% (largest

sector value of 6.3%).

At 10 m on Kingman’s forereef, horizontal gradients in wave energy explained 51%

of the variation in percent cover of calcified versus non-calcified organisms (distlm,

Pseudo-F= 13.484, P = 0.0073). Percent cover of calcified organisms decreased as wave

energy increased, with an approximately 20% drop in cover with a doubling of wave

energy (Fig. 7A). In contrast, cover of non-calcified organisms increased approximately

threefold with a doubling of wave energy (Fig. 7A). At the functional group level, 48%

of the variation in benthic community cover was explained by variation in wave energy

(distlm, Pseudo-F= 12.020, P = 0.0007). Hard coral cover decreased from approximately

60% to 20% with a doubling in wave energy (Fig. 7B); this appeared to be driving the

negative relationship between calcified cover and wave energy. In contrast, turf cover

increased approximately threefold with a doubling in wave energy (Fig. 7B); this appeared

to be driving the positive relationship between non-calcified cover and wave energy. Even

at the genus level, variations in wave energy explained 40% of the variation in benthic

community cover (distlm, Pseudo-F= 8.482, P = 0.0001). Specifically, cover of the hard

coral Acropora was negatively related to wave energy, decreasing from approximately 30%

to almost zero with a doubling of wave energy (Fig. 7C). In contrast, although a partially

calcified organism, cover of the encrusting red alga Peyssonnelia was positively related

to wave energy, doubling with a doubling of wave energy (Fig. 7C). Finally, the spatial

clustering of hard coral cover at 10 m approximately doubled as wave energy doubled

(Fig. 7D). No one genus appeared predominantly responsible for this relationship. No

other functional groups or genus-level indicator variables showed strong relationships

with wave energy.

On Palmyra’s forereef at 10 m, there were no significant relationships between

horizontal gradients in wave energy and percent cover of calcified versus non-calcified

organisms (distlm, Pseudo-F = 0.2802, P = 0.591), cover of various functional groups

(distlm, Pseudo-F= 1.2121, P = 0.329), or cover of various genera (distlm, Pseudo-F=

1.2816, P = 0.237).

DISCUSSION
Benthic communities at Kingman Reef and Palmyra Atoll were dominated by reef-building

calcifying organisms, namely hard corals and crustose coralline algae. This is consistent

with patterns observed at other remote, often uninhabited, islands in the Pacific, including

the US Phoenix Islands (Vroom et al., 2010) and parts of the Northwestern Hawaiian

Islands (Vroom & Braun, 2010; Page-Albins et al., 2012). In contrast, more impacted reef

communities, such as the populated islands of Kiritimati and Tabuaeran that neighbor

Kingman and Palmyra, are typically characterized by a higher cover of fleshy turf and

macroalgae (Sandin et al., 2008).
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Figure 7 Relationships between benthos and wave energy. Relationship between benthic communities
and wave power (kW/m) on Kingman’s forereef at 10 m.
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Reef Habitat
At Kingman and Palmyra, although differences in benthic communities were observed

among reef habitats, some consistent patterns emerged. Hard coral cover was generally

high, and one or two genera heavily dominated in sheltered habitats such as Kingman’s

patch reefs and Palmyra’s shallow reef terrace. The intermediate disturbance hypothesis

predicts that, in the absence of frequent disturbance, a climax community emerges that

becomes dominated by a small number of competitively superior species (Connell, 1978;

Rogers, 1993). Kingman’s patch reefs were dominated almost exclusively by slow-growing,

massive Porites spp. corals, which are not rapid colonists following disturbance events

(Glynn, 1993). This provides indirect evidence of competitive exclusion and suggests that

Kingman’s patch reefs represent a low disturbance environment with mature communities

at the equilibrium end of the scale within a nonequilibrium system (Hughes & Connell,

1999). Furthermore, as the establishment of climax communities is often prevented by

routine mortality (Tanner, Hughes & Connell, 1994), the mortality of these massive Porites

must be low enough to maintain a monopolization of space. This type of monospecific

dominance in sheltered reef habitats by slow-growing Porites has been noted elsewhere

in the Pacific, for example in parts of the Hawaiian Archipelago (Grigg & Maragos, 1974;

Grigg, 1983; Page-Albins et al., 2012). Evidence suggests that Palmyra’s shallow reef terrace

was once heavily dominated by the branching coral Acropora acuminata (Williams et al.,

2010), likely as a result of its fast growth rate, its ability to spread via fragmentation, and its

ability to shade competitors (Lang & Chornesky, 1990). The 1998 mass bleaching event

caused high mortality in A. acuminata (Williams et al., 2010), and Palmyra’s shallow

terrace is now dominated by encrusting Montipora; however, Acropora is the second

most abundant coral genus. While Palmyra’s shallow terrace has high hard coral cover

and relatively low diversity, this habitat is still unlikely in an equilibrium state. A recent

disease outbreak targeting tabular Acropora on Palmyra’s shallow reef terrace (Williams et

al., 2011a) highlights the dynamic nature of this coral community, with routine mortality

seemingly preventing monopolization of space by fast-growing Acropora corals.

Kingman’s forereef, while having similar hard coral cover to the patch reefs, had a

higher diversity of coral genera. Here, fast-growing branching and tabular Acropora and

corymbose Pocillopora dominated, not slow-growing massive Porites. The high diversity

and abundance of fast-growing corals on Kingman’s forereef suggests a nonequilibrium

community, probably in an earlier successional state (Hughes & Connell, 1999). Oceanic

forereef habitats are generally more exposed to physical disturbance events, such as large

swells, than more sheltered patch reef habitats (Storlazzi et al., 2005). Frequent disturbance

events (relative to the life histories of the local assemblages) on Kingman’s forereef may be

keeping benthic communities in earlier successional stages (Grigg, 1983) and preventing

competitive dominance by few species (Connell, 1978; Rogers, 1993).

Finally, Kingman’s backreef had lower coral cover and higher turf algae cover than

both the patch reefs and forereef, but as with the patch reefs, coral cover was heavily

dominated by massive Porites. On the backreef, conditions may be stable enough to allow

competitive dominance by Porites but unstable enough to prevent high Porites cover from
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establishing (Hughes & Connell, 1999). One possible disturbance mechanism could be the

transport of debris, such as live and dead coral fragments, by large swell events from the

forereef over the reef crest and onto the backreef slope (pers. obs.). Due to the steepness

of Kingman’s backreef slope, debris could easily reach a depth of 10 m and still cause

physical disturbance. The opening of space on a more regular basis by debris would help

to explain the higher cover of turf algae, a rapid early colonist of bare space following

disturbance (Grigg, 1983). It is also likely that grazing from the abundant herbivorous

fishes at Kingman (Friedlander et al., 2010) prevents transition of this turf algae toward

macroalgal dominance on the backreef.

Depth
Consistent patterns of benthic community zonation emerged across the three forereef

depths at Kingman and Palmyra (5, 10, 20 m), and these patterns largely held true between

the two depths on Palmyra’s reef terrace as well (5, 20 m). With increased depth, the

most consistent patterns were: a decrease in crustose coralline algae (CCA) and fleshy

macroalgae, an increase in other calcified macroalgae, and an increase in soft coral cover.

Patterns of hard coral cover were less consistent, remaining similar across depths on

Palmyra’s forereef, higher in the shallows than the deeper reef on Palmyra’s terrace, and

peaking at intermediate depths on Kingman’s forereef.

A peak in hard coral cover at intermediate depths appears to be a common feature

of forereef habitats (Huston, 1985). At shallow depths, harsh environmental conditions,

such as high oscillatory flow and irradiance, can inhibit coral feeding and cause photo

damage (Sebens & Johnson, 1991; Brown, 1997). Such physical conditions can prevent

the establishment of benthic communities with high coral cover (Rogers, 1993; Hughes &

Connell, 1999). Meanwhile, lower irradiance at deeper depths can limit photosynthesis

by zooxanthellae, while very low flow can lead to the establishment of boundary layers

around the coral surface and inhibit nutrient uptake, thus depressing coral respiration and

growth (Patterson, Sebens & Olson, 1991). Mid-depths on Kingman’s forereef thus may

represent an energetic optimum for hard corals, increasing overall cover. At mid-depths,

levels of irradiance and water flow may maximize the balance between energy intake and

respiration (Sebens, 1984) while providing adequate settlement substrate, such as CCA, for

coral recruitment (Price, 2010). This interpretation should be applied cautiously to other

locations, however, as not all reef environments share the same patterns of wave energy and

irradiance.

The increase of soft coral cover with depth on Kingman’s and Palmyra’s forereefs may

reflect the fact that zooxanthellate soft corals rely only moderately on phototrophy to

supply their carbon requirements. Soft corals often gain a large proportion of their food via

heterotrophy, often more effectively than scleractinian corals (Fabricius & Dommisse,

2000). Therefore, for soft corals, proximity to allochthonous particulate food from

upwelling (i.e., at increased depths) is likely more beneficial than proximity to higher

irradiance (i.e., shallower depths), which is often accompanied by high wave stress.

Thus, it is hypothesized that higher soft coral cover at depth at Kingman and Palmyra
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occurs because of higher food availability. The encrusting nature of CCA and its ability

to photoacclimate makes it particularly suited to shallow reef slope environments where

there is increased oscillatory flow and irradiance (Sheppard, 1980; Bulleri, 2006). CCA

cover decreased with depth on Kingman’s forereef and Palmyra’s forereef and terrace. This

likely reflects a shift from thicker-crusted species in the shallows that are more competitive

with other encrusting macroalgae, such as Lobophora and Peyssonnelia, and that are more

resistant to high flow and sediment abrasion, to species with thinner crusts at deeper

depths (Dethier, Paull & Woodbury, 1991). The biomass of herbivorous fishes is higher at

shallower depths on Kingman’s forereef (Friedlander et al., 2010), potentially leading to

increased grazing pressure on algal turfs and indirectly promoting and facilitating CCA

growth and persistence in the shallows (Smith, Hunter & Smith, 2010).

In contrast to CCA, percent cover of the calcified macroalgae Halimeda and Peyssonnelia

increased with depth. Many genera of calcified macroalgae, such as Halimeda, contain

specialized photosynthetic accessory pigments such as siphonoxanthin and siphonein that

allow them to effectively harvest light in deeper environments (Drew, 2011). In contrast,

due to its upright structure, Halimeda is likely vulnerable to being dislodged by wave action

in the shallows (Dethier, Paull & Woodbury, 1991). Increased abundance of herbivorous

fishes in the shallows may also increase grazing there (Friedlander et al., 2010), reducing

the cover and changing the composition of algal assemblages. The top-down effects

of herbivory on the emergent structure of the algal assemblage are difficult to predict,

however, without detailed knowledge of foraging patterns and functional responses (e.g., is

herbivory under-, over-, or perfectly compensatory with changes in algal production?)

(Gruner et al., 2008). The increase of Halimeda and Peyssonnelia with depth could also

reflect increased supply of nutrient-rich water from upwelling or internal tides/waves,

promoting growth (Smith et al., 2004), as well as competitive release from CCA (Dethier,

Paull & Woodbury, 1991). CCA abundance may be independent of nutrient supply

(Belliveau & Paul, 2002) or more dependent on high flux rates to reduce boundary layer

thickness and ensure that nutrients actually reach the thallus surface.

Kingman had virtually no fleshy macroalgae at any depth. The cover of the most

dominant fleshy macroalga at Palmyra, Lobophora, was highest in the shallows, likely

due to its low-lying, fan-like morphology, affording it protection from high oscillatory

flow. The different relationships of macroalgal taxa with depth emphasize the importance

of discriminating between calcified and fleshy macroalgae when linking macroalgal cover

to environmental conditions on coral reefs.

Wave energy
Forereef benthic community organization at 10 m depths at Kingman was consistent

with predictions of a simple univariate model of wave energy, such that the cover of

more wave-tolerant organisms increased with increased wave energy. This was not true

for Palmyra, where wave energy showed no clear patterns with benthic community

organization.

On Kingman’s forereef, the negative relationship between hard coral cover, particularly

Acropora, and wave energy at shallow and mid-depths is most likely due to physical
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disturbance by wave action. The dominant Acropora morphologies on Kingman’s forereef

are branching and tabular (Kenyon, Maragos & Wilkinson, 2010), both of which have

high colony shape factors and are thus vulnerable to being dislodged from the substrate

or damaged from waterborne projectiles (Madin, 2005). In a community dominated by

acroporid corals, then, it follows that increased wave energy results in decreased overall

hard coral cover. In contrast, cover of turf algae and the calcified encrusting red alga

Peyssonnelia both increased with increased wave energy. Following an inhibition model

of succession (Connell & Slatyer, 1977), these low-lying, wave-tolerant organisms may

become competitively superior under high wave energy conditions (Page-Albins et al.,

2012). Alternatively, the higher cover of these fast-growing, early successional organisms

could reflect a community continually re-set to an earlier successional state by repeated

physical disturbances (Rogers, 1993; Hughes & Connell, 1999). Analyses of time-series

data from permanent plots would be required to discern which of these mechanisms is

predominantly producing the observed benthic community patterns.

There may be several reasons why wave energy related strongly to mid-depth forereef

benthic communities at Kingman but not at Palmyra, two reefs only 60 km apart

that experience similar wave energy climatologies. First, Kingman is dominated by

fast-growing, fragile morphologies of Acropora corals, while Palmyra is dominated by

fast-growing corymbose Pocillopora corals and slow-growing massive Porites, both of

which are generally more wave-tolerant than Acropora. Second, in a previous study at

Palmyra, sedimentation (importantly, the percentage of very fine sediment) was strongly

related to overall hard coral cover and genus-level benthic community patterns (Williams

et al., 2011b). The degraded lagoon at Palmyra contains high levels of fine sediment that

is occasionally transported across the reef during the change in tidal state (pers. obs.).

The reef sites most impacted by sedimentation are associated with lower hard coral cover

(Williams et al., 2011b) and a higher prevalence of coral bleaching during thermal stress

events (Williams et al., 2010). This strong relationship between sedimentation and benthic

communities at Palmyra may thus be obscuring any easily detectable signal of wave energy

on community organization. Finally, waves can be highly complex due to refraction,

dissipation and other wave-bathymetry interactions. The use of deep water wave

information in discrete sectors may underrepresent the spatial complexity of nearshore

wave forcing, potentially contributing to the observed decoupling of wave energy and

benthic community composition around Palmyra. We have not accounted for other

physical oceanographic forcings that may be pertinent to benthic reef communities, such

as internal tides and patterns of lagoon outflow. A nearshore hydrodynamic model would

presumably capture additional physical forcings and therefore be a more appropriate tool

for exploring biophysical coupling at Palmyra.

Kingman Reef and Palmyra Atoll provide an opportunity to study benthic dynamics and

biophysical coupling where calcifying organisms, such as hard corals and CCA, dominate

the benthos, where local human impacts are absent, and where the remote oceanic nature

of these reef systems provides unique biophysical settings. Elucidating the driving forces

of ecological dynamics for such systems will allow discrepancies with more impacted reefs
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in similar oceanographic settings to be deciphered. Such information should provide a

context specific understanding of the relative importance of local human impacts versus

natural variations in oceanography and climate on coral reef community organization and

dynamics.
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