230 research outputs found
The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles
Engineered inorganic nanoparticles are essential components in the
development of nanotechnologies. For applications in nanomedicine, particles
need to be functionalized to ensure a good dispersibility in biological fluids.
In many cases however, functionalization is not sufficient : the particles
become either coated by a corona of serum proteins or precipitate out of the
solvent. In the present paper, we show that by changing the coating of iron
oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small
carboxylated polymers (poly(acrylic acid)), the colloidal stability of the
dispersion is improved and the adsorption/internalization of iron towards
living mammalian cells is profoundly affected. Citrate-coated particles are
shown to destabilize in all fetal-calf-serum based physiological conditions
tested, whereas the polymer coated particles exhibit an outstanding
dispersibility as well as a structure devoid of protein corona. The
interactions between nanoparticles and human lymphoblastoid cells are
investigated by transmission electron microscopy and flow cytometry. Two types
of nanoparticle/cell interactions are underlined. Iron oxides are found either
adsorbed on the cellular membranes, or internalized into membrane-bound
endocytosis compartments. For the precipitating citrate-coated particles, the
kinetics of interactions reveal a massive and rapid adsorption of iron oxide on
the cell surfaces. The quantification of the partition between adsorbed and
internalized iron was performed from the cytometry data. The results highlight
the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane.Comment: 21 pages, 11 figures, accepted at Biomaterials (2011
Thirty Femtograms Detection of Iron in Mammalian Cells
Inorganic nanomaterials and particles with enhanced optical, mechanical or
magnetic attributes are currently being developed for a wide range of
applications. Safety issues have been formulated however concerning their
potential cyto- and genotoxicity. For in vivo and in vitro experimentations,
recent developments have heightened the need of simple and facile methods to
measure the amount of nanoparticles taken up by cells or tissues. In this work,
we present a rapid and highly sensitive method for quantifying the uptake of
iron oxide nanoparticles in mammalian cells. Our approach exploits the
digestion of incubated cells with concentrated hydrochloric acid reactant and a
colorimetric based UV-Visible absorption technique. The technique allows the
detection of iron in cells over 4 decades in masses, from 0.03 to 300 picograms
per cell. Applied on particles of different surface chemistry and sizes, the
protocol demonstrates that the coating is the key parameter in the
nanoparticle/cell interactions. The data are corroborated by scanning and
transmission electron microscopy and stress the importance of resiliently
adsorbed nanoparticles at the plasma membrane.Comment: 18 pages, 6 figure
In vitro toxicity of nanoceria: effect of coating and stability in biofluids
Due to the increasing use of nanometric cerium oxide in applications,
concerns about the toxicity of these particles have been raised and have
resulted in a large number of investigations. We report here on the
interactions between 7 nm anionically charged cerium oxide particles and living
mammalian cells. By a modification of the particle coating including
low-molecular weight ligands and polymers, two generic behaviors are compared:
particles coated with citrate ions that precipitate in biofluids and particles
coated with poly(acrylic acid) that are stable and remain nanometric. We find
that nanoceria covered with both coating agents are taken up by mouse
fibroblasts and localized into membrane-bound compartments. However, flow
cytometry and electron microscopy reveal that as a result of their
precipitation, citrate-coated particles interact more strongly with cells. At
cerium concentration above 1 mM, only citrate-coated nanoceria (and not
particles coated with poly(acrylic acid)) display toxicity and moderate
genotoxicity. The results demonstrate that the control of the surface chemistry
of the particles and its ability to prevent aggregation can affect the toxicity
of nanomaterials.Comment: 33 pages 10 figures, accepted at Nanotoxicolog
EVOLUTION OF THE FUSION LIKE PROCESS AROUND THE FERMI ENERGY
The study of evaporation residue from the Ne + Ag system shows that there is qualitative change in the reaction mechanism in the Fermi energy domain. At 20 MeV/u the projectile is mostly absobered by the target, while at 30-37 MeV/u a continious range of mass transfer with a large transverse momentum is observed
Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation
We report on the uptake, toxicity and degradation of magnetic nanowires by
NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths
comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly
of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron
microscopy, we show that after 24 h incubation the wires are internalized by
the cells and located either in membrane-bound compartments or dispersed in the
cytosol. Using fluorescence microscopy, the membrane-bound compartments were
identified as late endosomal/lysosomal endosomes labeled with lysosomal
associated membrane protein (Lamp1). Toxicity assays evaluating the
mitochondrial activity, cell proliferation and production of reactive oxygen
species show that the wires do not display acute short-term (< 100 h) toxicity
towards the cells. Interestingly, the cells are able to degrade the wires and
to transform them into smaller aggregates, even in short time periods (days).
This degradation is likely to occur as a consequence of the internal structure
of the wires, which is that of a non-covalently bound aggregate. We anticipate
that this degradation should prevent long-term asbestos-like toxicity effects
related to high aspect ratio morphologies and that these wires represent a
promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure
The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ
The electrical potentials at membrane surfaces (ψ0) strongly influence the physiological responses to ions. Ion activities at membrane surfaces may be computed from ψ0, and physiological responses to ions are better interpreted with surface activities than with bulk-phase activities. ψ0 influences the gating of ion channels and the driving force for ion fluxes across membranes. ψ0 may be computed with electrostatic models incorporating the intrinsic surface charge density of the membrane (σ0), the ion composition of the bathing medium, and ion binding to the membrane. Some of the parameter values needed for the models are well established: the equilibrium constants for ion binding were confirmed for several ions using multiple approaches, and a method is proposed for the computation of other binding constants. σ0 is less well established, although it has been estimated by several methods, including computation from the near-surface electrical potentials [zeta (ζ) potentials] measured by electrophoreses. Computation from ζ potentials yields values in the range –2 mC m−2 to –8 mC m−2, but other methods yield values in the range –15 mC m−2 to –40 mC m−2. A systematic discrepancy between measured and computed ζ potentials was noted. The preponderance of evidence supports the suitability of σ0= –30 mC m−2. A proposed, fully paramatized Gouy–Chapman–Stern model appears to be suitable for the interpretation of many plant responses to the ionic environment
In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill.
In vitro mycorrhization can be made by several axenic and nonaxenic
techniques but criticism exists about their artificiality and inability to
reproduce under natural conditions. However, artificial mycorrhization under
controlled conditions can provide important information about the physiology
of symbiosis. Micropropagated Castanea sativa plants were inoculated with
the mycorrhizal fungus Pisolithus tinctorius after in vitro rooting. The
mycorrhizal process was monitored at regular intervals in order to evaluate the
mantle and hartig net formation, and the growth rates of mycorrhizal and
nonmycorrhizal plants. Plant roots show fungal hyphae adhesion at the surface
after 24 hours of mycorrhizal induction. After 20 days a mantle can be
observed and a hartig net is forming although the morphology of the epidermal
cells remains unaltered. At 30 days of root–fungus contact the hartig net is
well developed and the epidermal cells are already enlarged. After 50 days of
mycorrhizal induction, growth was higher for mycorrhizal plants than for
nonmycorrhizal ones. The length of the major roots was lower in mycorrhizal
plants after 40 days. Fresh and dry weights were higher in mycorrhizal plants
after 30 days. The growth rates of chestnut mycorrhizal plants are in agreement
with the morphological development of the mycorrhizal structures observed at
each mycorrhizal time. The assessment of symbiotic establishment takes into
account the formation of a mantle and a hartig net that were already developed
at 30 days, when differences between fresh and dry weights of mycorrhizal and
nonmycorrhizal plants can be quantified. In vitro conditions, mycorrhization
influences plant physiology after 20 days of root–fungus contact, namely in
terms of growth rates. Fresh and dry weights, heights, stem diameter and
growth rates increased while major root growth rate decreased in mycorrhizal
plants.Springe
- …