230 research outputs found

    The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles

    Full text link
    Engineered inorganic nanoparticles are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient : the particles become either coated by a corona of serum proteins or precipitate out of the solvent. In the present paper, we show that by changing the coating of iron oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small carboxylated polymers (poly(acrylic acid)), the colloidal stability of the dispersion is improved and the adsorption/internalization of iron towards living mammalian cells is profoundly affected. Citrate-coated particles are shown to destabilize in all fetal-calf-serum based physiological conditions tested, whereas the polymer coated particles exhibit an outstanding dispersibility as well as a structure devoid of protein corona. The interactions between nanoparticles and human lymphoblastoid cells are investigated by transmission electron microscopy and flow cytometry. Two types of nanoparticle/cell interactions are underlined. Iron oxides are found either adsorbed on the cellular membranes, or internalized into membrane-bound endocytosis compartments. For the precipitating citrate-coated particles, the kinetics of interactions reveal a massive and rapid adsorption of iron oxide on the cell surfaces. The quantification of the partition between adsorbed and internalized iron was performed from the cytometry data. The results highlight the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane.Comment: 21 pages, 11 figures, accepted at Biomaterials (2011

    Thirty Femtograms Detection of Iron in Mammalian Cells

    Full text link
    Inorganic nanomaterials and particles with enhanced optical, mechanical or magnetic attributes are currently being developed for a wide range of applications. Safety issues have been formulated however concerning their potential cyto- and genotoxicity. For in vivo and in vitro experimentations, recent developments have heightened the need of simple and facile methods to measure the amount of nanoparticles taken up by cells or tissues. In this work, we present a rapid and highly sensitive method for quantifying the uptake of iron oxide nanoparticles in mammalian cells. Our approach exploits the digestion of incubated cells with concentrated hydrochloric acid reactant and a colorimetric based UV-Visible absorption technique. The technique allows the detection of iron in cells over 4 decades in masses, from 0.03 to 300 picograms per cell. Applied on particles of different surface chemistry and sizes, the protocol demonstrates that the coating is the key parameter in the nanoparticle/cell interactions. The data are corroborated by scanning and transmission electron microscopy and stress the importance of resiliently adsorbed nanoparticles at the plasma membrane.Comment: 18 pages, 6 figure

    In vitro toxicity of nanoceria: effect of coating and stability in biofluids

    Full text link
    Due to the increasing use of nanometric cerium oxide in applications, concerns about the toxicity of these particles have been raised and have resulted in a large number of investigations. We report here on the interactions between 7 nm anionically charged cerium oxide particles and living mammalian cells. By a modification of the particle coating including low-molecular weight ligands and polymers, two generic behaviors are compared: particles coated with citrate ions that precipitate in biofluids and particles coated with poly(acrylic acid) that are stable and remain nanometric. We find that nanoceria covered with both coating agents are taken up by mouse fibroblasts and localized into membrane-bound compartments. However, flow cytometry and electron microscopy reveal that as a result of their precipitation, citrate-coated particles interact more strongly with cells. At cerium concentration above 1 mM, only citrate-coated nanoceria (and not particles coated with poly(acrylic acid)) display toxicity and moderate genotoxicity. The results demonstrate that the control of the surface chemistry of the particles and its ability to prevent aggregation can affect the toxicity of nanomaterials.Comment: 33 pages 10 figures, accepted at Nanotoxicolog

    EVOLUTION OF THE FUSION LIKE PROCESS AROUND THE FERMI ENERGY

    Get PDF
    The study of evaporation residue from the Ne + Ag system shows that there is qualitative change in the reaction mechanism in the Fermi energy domain. At 20 MeV/u the projectile is mostly absobered by the target, while at 30-37 MeV/u a continious range of mass transfer with a large transverse momentum is observed

    Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation

    Full text link
    We report on the uptake, toxicity and degradation of magnetic nanowires by NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron microscopy, we show that after 24 h incubation the wires are internalized by the cells and located either in membrane-bound compartments or dispersed in the cytosol. Using fluorescence microscopy, the membrane-bound compartments were identified as late endosomal/lysosomal endosomes labeled with lysosomal associated membrane protein (Lamp1). Toxicity assays evaluating the mitochondrial activity, cell proliferation and production of reactive oxygen species show that the wires do not display acute short-term (< 100 h) toxicity towards the cells. Interestingly, the cells are able to degrade the wires and to transform them into smaller aggregates, even in short time periods (days). This degradation is likely to occur as a consequence of the internal structure of the wires, which is that of a non-covalently bound aggregate. We anticipate that this degradation should prevent long-term asbestos-like toxicity effects related to high aspect ratio morphologies and that these wires represent a promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure

    The surface charge density of plant cell membranes (σ): an attempt to resolve conflicting values for intrinsic σ

    Get PDF
    The electrical potentials at membrane surfaces (ψ0) strongly influence the physiological responses to ions. Ion activities at membrane surfaces may be computed from ψ0, and physiological responses to ions are better interpreted with surface activities than with bulk-phase activities. ψ0 influences the gating of ion channels and the driving force for ion fluxes across membranes. ψ0 may be computed with electrostatic models incorporating the intrinsic surface charge density of the membrane (σ0), the ion composition of the bathing medium, and ion binding to the membrane. Some of the parameter values needed for the models are well established: the equilibrium constants for ion binding were confirmed for several ions using multiple approaches, and a method is proposed for the computation of other binding constants. σ0 is less well established, although it has been estimated by several methods, including computation from the near-surface electrical potentials [zeta (ζ) potentials] measured by electrophoreses. Computation from ζ potentials yields values in the range –2 mC m−2 to –8 mC m−2, but other methods yield values in the range –15 mC m−2 to –40 mC m−2. A systematic discrepancy between measured and computed ζ potentials was noted. The preponderance of evidence supports the suitability of σ0= –30 mC m−2. A proposed, fully paramatized Gouy–Chapman–Stern model appears to be suitable for the interpretation of many plant responses to the ionic environment

    In vitro mycorrhization of micropropagated plants: studies on Castanea sativa Mill.

    Get PDF
    In vitro mycorrhization can be made by several axenic and nonaxenic techniques but criticism exists about their artificiality and inability to reproduce under natural conditions. However, artificial mycorrhization under controlled conditions can provide important information about the physiology of symbiosis. Micropropagated Castanea sativa plants were inoculated with the mycorrhizal fungus Pisolithus tinctorius after in vitro rooting. The mycorrhizal process was monitored at regular intervals in order to evaluate the mantle and hartig net formation, and the growth rates of mycorrhizal and nonmycorrhizal plants. Plant roots show fungal hyphae adhesion at the surface after 24 hours of mycorrhizal induction. After 20 days a mantle can be observed and a hartig net is forming although the morphology of the epidermal cells remains unaltered. At 30 days of root–fungus contact the hartig net is well developed and the epidermal cells are already enlarged. After 50 days of mycorrhizal induction, growth was higher for mycorrhizal plants than for nonmycorrhizal ones. The length of the major roots was lower in mycorrhizal plants after 40 days. Fresh and dry weights were higher in mycorrhizal plants after 30 days. The growth rates of chestnut mycorrhizal plants are in agreement with the morphological development of the mycorrhizal structures observed at each mycorrhizal time. The assessment of symbiotic establishment takes into account the formation of a mantle and a hartig net that were already developed at 30 days, when differences between fresh and dry weights of mycorrhizal and nonmycorrhizal plants can be quantified. In vitro conditions, mycorrhization influences plant physiology after 20 days of root–fungus contact, namely in terms of growth rates. Fresh and dry weights, heights, stem diameter and growth rates increased while major root growth rate decreased in mycorrhizal plants.Springe
    • …
    corecore