8 research outputs found

    A big data based cost prediction method for remanufacturing end-of-life products

    Get PDF
    Remanufacturing is considered as an important industrial process to restore the performance and function of End-of-Life (EOL) products to a like-new state. In order to help enterprises effectively and precisely predict the cost of remanufacturing processes, a remanufacturing cost prediction model based on big data is developed. In this paper, a cost analysis framework is established by applying big data technologies to interpret the obtained data, identify the intricate relationship of obtained sensor data and its corresponding remanufacturing processes and associated costs. Then big data mining and particle swarm optimization Back Propagation (BP) neural network algorithm are utilized to implement the cost prediction. The application of presented model is verified by a case study, and the results demonstrates that the developed model can predict the cost of the remanufacturing accurately allowing early decision making for remanufacturability of the EOL products

    A prediction approach of fiber laser surface treatment using ensemble of metamodels considering energy consumption and processing quality

    No full text
    Laser surface treatment (LST) is essential for advanced manufacturing but is extremely energy intensive. Being energy-aware is imperative as the industry pays increasing attention to energy management and environmental protection. However, existing literature mainly focuses on the laser-material interaction in LST, while few studies have considered energy consumption when investigating the processing quality. In this article, three metamodels (Kriging, RBF, and SVR) are integrated into an ensemble of metamodels (EM) by suitable weight coefficients, and the EM incorporates the predictive advantages of different metamodels. The EM establishes the relationship between laser process parameters (laser power, scan speed, and defocusing amount) and three outputs (total energy consumption, surface roughness, and depth-width ratio of LST track). The effectiveness of the presented prediction approach is validated by the leave-one-out method and additional experiments. Furthermore, the main influences of process parameters on the three outputs are studied. According to the technique for order preference by similarity to an ideal solution (TOPSIS), the optimal process parameter is Group No. 2, with the relative closeness of 78.04%, while the worst one is Group No. 13, with the relative closeness of 2.21%. The presented prediction approach can serve as a reliable foundation in the energy-aware application of laser processing
    corecore