681 research outputs found

    Accuracy of remotely sensed data: Sampling and analysis procedures

    Get PDF
    A review and update of the discrete multivariate analysis techniques used for accuracy assessment is given. A listing of the computer program written to implement these techniques is given. New work on evaluating accuracy assessment using Monte Carlo simulation with different sampling schemes is given. The results of matrices from the mapping effort of the San Juan National Forest is given. A method for estimating the sample size requirements for implementing the accuracy assessment procedures is given. A proposed method for determining the reliability of change detection between two maps of the same area produced at different times is given

    Nationwide forestry applications program. Analysis of forest classification accuracy

    Get PDF
    The development of LANDSAT classification accuracy assessment techniques, and of a computerized system for assessing wildlife habitat from land cover maps are considered. A literature review on accuracy assessment techniques and an explanation for the techniques development under both projects are included along with listings of the computer programs. The presentations and discussions at the National Working Conference on LANDSAT Classification Accuracy are summarized. Two symposium papers which were published on the results of this project are appended

    Forest management and wildfire risk in inland northwest

    Get PDF
    This brief reports the results of a mail survey of forest landowners in northeastern Oregon conducted in the fall of 2012 by the Communities and Forests in Oregon (CAFOR) Project at the University of Colorado and the University of New Hampshire in cooperation with Oregon State University College of Forestry Extension. The mail survey--a follow-up to a telephone survey conducted for the counties of Baker, Union, and Wallowa in the fall of 2011 -was administered to understand who constituted forest landowners in these three coun¬ties and their perceptions about forest management on both public and private land, as well as risks to forests in the area and the actions they have taken to reduce those risks. The respondents indicated that they perceive wildfire as the greatest threat to their lands, and they consider cooperation with neighbors as very or extremely important for land management. Forest landowners believe public lands are managed poorly and see a greater risk of wildfire occurring on neighboring public land than on their own land. Their opinions on land management are not strongly related to background factors or ideology (for example, gender, age, political party, wealth) but may be heavily influenced by personal experience with wildfire

    A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform

    Get PDF
    © 2018 The Author(s) Mapping high resolution (30-m or better) cropland extent over very large areas such as continents or large countries or regions accurately, precisely, repeatedly, and rapidly is of great importance for addressing the global food and water security challenges. Such cropland extent products capture individual farm fields, small or large, and are crucial for developing accurate higher-level cropland products such as cropping intensities, crop types, crop watering methods (irrigated or rainfed), crop productivity, and crop water productivity. It also brings many challenges that include handling massively large data volumes, computing power, and collecting resource intensive reference training and validation data over complex geographic and political boundaries. Thereby, this study developed a precise and accurate Landsat 30-m derived cropland extent product for two very important, distinct, diverse, and large countries: Australia and China. The study used of eight bands (blue, green, red, NIR, SWIR1, SWIR2, TIR1, and NDVI) of Landsat-8 every 16-day Operational Land Imager (OLI) data for the years 2013–2015. The classification was performed by using a pixel-based supervised random forest (RF) machine learning algorithm (MLA) executed on the Google Earth Engine (GEE) cloud computing platform. Each band was time-composited over 4–6 time-periods over a year using median value for various agro-ecological zones (AEZs) of Australia and China. This resulted in a 32–48-layer mega-file data-cube (MFDC) for each of the AEZs. Reference training and validation data were gathered from: (a) field visits, (b) sub-meter to 5-m very high spatial resolution imagery (VHRI) data, and (c) ancillary sources such as from the National agriculture bureaus. Croplands versus non-croplands knowledge base for training the RF algorithm were derived from MFDC using 958 reference-training samples for Australia and 2130 reference-training samples for China. The resulting 30-m cropland extent product was assessed for accuracies using independent validation samples: 900 for Australia and 1972 for China. The 30-m cropland extent product of Australia showed an overall accuracy of 97.6% with a producer's accuracy of 98.8% (errors of omissions = 1.2%), and user's accuracy of 79% (errors of commissions = 21%) for the cropland class. For China, overall accuracies were 94% with a producer's accuracy of 80% (errors of omissions = 20%), and user's accuracy of 84.2% (errors of commissions = 15.8%) for cropland class. Total cropland areas of Australia were estimated as 35.1 million hectares and 165.2 million hectares for China. These estimates were higher by 8.6% for Australia and 3.9% for China when compared with the traditionally derived national statistics. The cropland extent product further demonstrated the ability to estimate sub-national cropland areas accurately by providing an R2 value of 0.85 when compared with province-wise cropland areas of China. The study provides a paradigm-shift on how cropland maps are produced using multi-date remote sensing. These products can be browsed at www.croplands.org and made available for download at NASA's Land Processes Distributed Active Archive Center (LP DAAC) https://www.lpdaac.usgs.gov/node/1282

    Vegetation and Soil Fire Damage Analysis Based on Species Distribution Modeling Trained with Multispectral Satellite Data

    Get PDF
    P. 1-24Forest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy (MaxEnt). We studied a mega-wildfire (9000 ha burned) in North-Western Spain, which occurred from 21 to 27 August 2017. Burn severity was measured in the field using the composite burn index (CBI). Burn severity of vegetation and soil layers (CBIveg and CBIsoil) was also di erentiated. MaxEnt provided the relative contribution of each pre-fire and post-fire input variable on low, moderate and high burn severity levels, as well as on all severity levels combined (burned area). In addition, it built continuous suitability surfaces from which the burned surface area and burn severity maps were built. The burned area map achieved a high accuracy level ( = 0.85), but slightly lower accuracy when di erentiating the three burn severity classes ( = 0.81). When the burn severity map was validated using field CBIveg and CBIsoil values we reached lower statistic values (0.76 and 0.63, respectively). This study revealed the e ectiveness of the proposed multi-temporal MaxEnt based method to map fire damage accurately in Mediterranean ecosystems, providing key information to forest managersS

    A Technical Solution to Allow Off-line Mobile Map Querying of Discrete and Continuous Geographic Attribute Data

    Full text link
    In this article, a technique towards the generation of hybrid raster-attributes map for use in mobile devices is described. Our solution is based on coding the map attributes within an image using RGB values. The designed coding method enables the simultaneous storage of discrete thematic attributes and continuous quantitative attributes. This approach offers a wide range of possible uses. Small memory storage requirements and the simplicity of the software enable this coding method to be used efficiently in mobile devices without Internet connection. This article describes the basic fundamentals of the coding technique, as well as the operation and limitations regarding the volume of information. Two specific applications are presented: a topographic map used for recreational activities, and a visitor map of a university campus.Palomar-Vázquez, J.; Pardo Pascual, JE.; Sebastiá Tarín, L.; Recio Recio, JA. (2012). A Technical Solution to Allow Off-line Mobile Map Querying of Discrete and Continuous Geographic Attribute Data. Cartographic Journal. 49(2):143-152. doi:10.1179/1743277411Y.0000000029S14315249

    Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud

    Get PDF
    Cropland extent maps are useful components for assessing food security. Ideally, such products are a useful addition to countrywide agricultural statistics since they are not politically biased and can be used to calculate cropland area for any spatial unit from an individual farm to various administrative unites (e.g., state, county, district) within and across nations, which in turn can be used to estimate agricultural productivity as well as degree of disturbance on food security from natural disasters and political conflict. However, existing cropland extent maps over large areas (e.g., Country, region, continent, world) are derived from coarse resolution imagery (250 m to 1 km pixels) and have many limitations such as missing fragmented and\or small farms with mixed signatures from different crop types and\or farming practices that can be, confused with other land cover. As a result, the coarse resolution maps have limited useflness in areas where fields are small (<1 ha), such as in Southeast Asia. Furthermore, coarse resolution cropland maps have known uncertainties in both geo-precision of cropland location as well as accuracies of the product. To overcome these limitations, this research was conducted using multi-date, multi-year 30-m Landsat time-series data for 3 years chosen from 2013 to 2016 for all Southeast and Northeast Asian Countries (SNACs), which included 7 refined agro-ecological zones (RAEZ) and 12 countries (Indonesia, Thailand, Myanmar, Vietnam, Malaysia, Philippines, Cambodia, Japan, North Korea, Laos, South Korea, and Brunei). The 30-m (1 pixel = 0.09 ha) data from Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper (ETM+) were used in the study. Ten Landsat bands were used in the analysis (blue, green, red, NIR, SWIR1, SWIR2, Thermal, NDVI, NDWI, LSWI) along with additional layers of standard deviation of these 10 bands across 1 year, and global digital elevation model (GDEM)-derived slope and elevation bands. To reduce the impact of clouds, the Landsat imagery was time-composited over four time-periods (Period 1: January- April, Period 2: May-August, and Period 3: September-December) over 3-years. Period 4 was the standard deviation of all 10 bands taken over all images acquired during the 2015 calendar year. These four period composites, totaling 42 band data-cube, were generated for each of the 7 RAEZs. The reference training data (N = 7849) generated for the 7 RAEZ using sub-meter to 5-m very high spatial resolution imagery (VHRI) helped generate the knowledge-base to separate croplands from non-croplands. This knowledge-base was used to code and run a pixel-based random forest (RF) supervised machine learning algorithm on the Google Earth Engine (GEE) cloud computing environment to separate croplands from non-croplands. The resulting cropland extent products were evaluated using an independent reference validation dataset (N = 1750) in each of the 7 RAEZs as well as for the entire SNAC area. For the entire SNAC area, the overall accuracy was 88.1% with a producer’s accuracy of 81.6% (errors of omissions = 18.4%) and user’s accuracy of 76.7% (errors of commissions = 23.3%). For each of the 7 RAEZs overall accuracies varied from 83.2 to 96.4%. Cropland areas calculated for the 12 countries were compared with country areas reported by the United Nations Food and Agriculture Organization and other national cropland statistics resulting in an R2 value of 0.93. The cropland areas of provinces were compared with the province statistics that showed an R2 = 0.95 for South Korea and R2 = 0.94 for Thailand. The cropland products are made available on an interactive viewer at www.croplands.org and for download at National Aeronautics and Space Administration’s (NASA) Land Processes Distributed Active Archive Center (LP DAAC): https://lpdaac.usgs.gov/node/1281

    NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) Cropland Extent 2015 South Asia, Afghanistan, Iran 30 m V001

    Get PDF
    The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) data product provides cropland extent data over South Asia, Afghanistan, and Iran for nominal year 2015 at 30 meter resolution (GFSAD30SAAFGIRCE). The monitoring of global cropland extent is critical for policymaking and provides important baseline data that are used in many agricultural cropland studies pertaining to water sustainability and food security. The GFSAD30SAAFGIRCE data product uses the pixel-based supervised classifier Random Forest (RF) to retrieve cropland extent from a combination of Landsat 8 Operational Land Imager (OLI) and elevation derived from the Shuttle Radar Topography Mission (SRTM) Version 3 data products. Each GFSAD30SAAFGIRCE GeoTIFF file contains a cropland extent layer that defines areas of cropland, non-cropland, and water bodies over a 10⁰ by 10⁰ area
    corecore