265 research outputs found

    Implementation of a mentored professional development programme in laboratory leadership and management in the Middle East and North Africa.

    Get PDF
    Laboratories need leaders who can effectively utilize the laboratories' resources, maximize the laboratories'capacity to detect disease, and advocate for laboratories in a fluctuating health care environment. To address this need, the University of Washington, USA, created the Certificate Program in Laboratory Leadership and Management in partnership with WHO Regional Office for the Eastern Mediterranean, and implemented it with 17 participants and 11 mentors from clinical and public health laboratories in 10 countries (Egypt, Iraq, Jordan, Lebanon, Morocco, Oman, Pakistan, Qatar, Saudi Arabia, and Yemen) in 2014. Designed to teach leadership and management skills to laboratory supervisors, the programme enabled participants to improve laboratory testing quality and operations. The programme was successful overall, with 80% of participants completing it and making impactful changes in their laboratories. This success is encouraging and could serve as a model to further strengthen laboratory capacity in the Region

    Targeting the spliceosome through RBM39 degradation results in exceptional responses in high-risk neuroblastoma models

    Get PDF
    Aberrant alternative pre-mRNA splicing plays a critical role in MYC-driven cancers and therefore may represent a therapeutic vulnerability. Here, we show that neuroblastoma, a MYC-driven cancer characterized by splicing dysregulation and spliceosomal dependency, requires the splicing factor RBM39 for survival. Indisulam, a "molecular glue"that selectively recruits RBM39 to the CRL4-DCAF15 E3 ubiquitin ligase for proteasomal degradation, is highly efficacious against neuroblastoma, leading to significant responses in multiple high-risk disease models, without overt toxicity. Genetic depletion or indisulam-mediated degradation of RBM39 induces significant genome-wide splicing anomalies and cell death. Mechanistically, the dependency on RBM39 and high-level expression of DCAF15 determine the exquisite sensitivity of neuroblastoma to indisulam. Our data indicate that targeting the dysregulated spliceosome by precisely inhibiting RBM39, a vulnerability in neuroblastoma, is a valid therapeutic strategy

    Peripheral-Blood Stem Cells versus Bone Marrow from Unrelated Donors

    Get PDF
    BACKGROUND Randomized trials have shown that the transplantation of filgrastim-mobilized peripheral-blood stem cells from HLA-identical siblings accelerates engraftment but increases the risks of acute and chronic graft-versus-host disease (GVHD), as compared with the transplantation of bone marrow. Some studies have also shown that peripheral-blood stem cells are associated with a decreased rate of relapse and improved survival among recipients with high-risk leukemia. METHODS We conducted a phase 3, multicenter, randomized trial of transplantation of peripheral-blood stem cells versus bone marrow from unrelated donors to compare 2-year survival probabilities with the use of an intention-to-treat analysis. Between March 2004 and September 2009, we enrolled 551 patients at 48 centers. Patients were randomly assigned in a 1:1 ratio to peripheral-blood stem-cell or bone marrow transplantation, stratified according to transplantation center and disease risk. The median follow-up of surviving patients was 36 months (interquartile range, 30 to 37). RESULTS The overall survival rate at 2 years in the peripheral-blood group was 51% (95% confidence interval [CI], 45 to 57), as compared with 46% (95% CI, 40 to 52) in the bone marrow group (P=0.29), with an absolute difference of 5 percentage points (95% CI, −3 to 14). The overall incidence of graft failure in the peripheral-blood group was 3% (95% CI, 1 to 5), versus 9% (95% CI, 6 to 13) in the bone marrow group (P=0.002). The incidence of chronic GVHD at 2 years in the peripheral-blood group was 53% (95% CI, 45 to 61), as compared with 41% (95% CI, 34 to 48) in the bone marrow group (P=0.01). There were no significant between-group differences in the incidence of acute GVHD or relapse. CONCLUSIONS We did not detect significant survival differences between peripheral-blood stem-cell and bone marrow transplantation from unrelated donors. Exploratory analyses of secondary end points indicated that peripheral-blood stem cells may reduce the risk of graft failure, whereas bone marrow may reduce the risk of chronic GVHD. (Funded by the National Heart, Lung, and Blood Institute–National Cancer Institute and others; ClinicalTrials.gov number, NCT00075816.

    Comparison of model and ground observations finds snowpack and blowing snow both contribute to Arctic tropospheric reactive bromine

    Get PDF
    International audienceReactive halogens play a prominent role in the atmospheric chemistry of the Arctic during springtime. Field measurements and models studies suggest that halogens are emitted to the atmosphere from snowpack and reactions on wind-blown snow. The relative importance of snowpack and blowing snow sources is still debated, both at local scales and regionally throughout the Arctic. To understand implications of these halogen sources on a pan-Arctic scale, we simulate Arctic reactive bromine chemistry in the atmospheric chemical transport model GEOS-Chem. Two mechanisms are included: 1) a blowing snow sea salt aerosol formation mechanism and 2) a snowpack mechanism assuming uniform molecular bromine production from all snow surfaces. We compare simulations including neither mechanism, each mechanism individually, and both mechanisms to examine conditions where one process may dominate or the mechanisms may interact. We compare the models using these mechanisms to observations of bromine monoxide (BrO) derived from multiple-axis differential optical absorption spectroscopy (MAX-DOAS) instruments on O-Buoy platforms on the sea ice and at a coastal site in Utqiaġvik, Alaska during spring 2015. Model estimations of hourly and monthly average BrO are improved by assuming a constant yield of 0.1% molecular bromine from all snowpack surfaces on ozone deposition. The blowing snow mechanism increases BrO by providing more surface area for reactiv

    Purification and partial characterization of the OmpA family of proteins of Pasteurella haemolytica

    Get PDF
    This study was conducted to partially characterize and identify the purity of two major outer membrane proteins (OMPs) (with molecular weights of 32,000 and 35,000 [32K and 35K, respectively]) of Pasteurella haemolytica. The 35K and 32K major OMPs, designated Pasteurella outer membrane proteins A and B (PomA and PomB, respectively), were extracted from P. haemolytica by solubilization in N-octyl polyoxyl ethylene. The P. haemolytica strain used was a mutant serotype A1 from which the genes expressing the 30-kDa lipoproteins had been deleted. PomA and PomB were separated and partially purified by anion-exchange chromatography. PomA but not PomB was heat modifiable. The N-terminal amino acid sequences of the two proteins were determined and compared with reported sequences of other known proteins. PomA had significant N-terminal sequence homology with the OmpA protein of Escherichia coli and related proteins from other gram-negative bacteria. Moreover, polyclonal antiserum raised against the E. coli OmpA protein reacted with this protein. PomA was surface exposed, was conserved among P. haemolytica biotype A serotypes, and had porin activity in planar bilayers. No homology between the N-terminal amino acid sequence of PomB and those of other known bacterial proteins was found. Cattle vaccinated with live P. haemolytica developed a significant increase in serum antibodies to partially purified PomA, as shown by enzyme-linked immunosorbent assays, and to purified PomA and PomB, as detected on Western blots and by densitometry.Peer reviewedAnatomy, Pathology and PharmacologyInfectious Disease and Physiolog

    Are liver and renal lesions in East Greenland polar bears (Ursus maritimus) associated with high mercury levels?

    Get PDF
    BACKGROUND: In the Arctic, polar bears (Ursus maritimus) bio-accumulate mercury as they prey on polluted ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). Studies have shown that polar bears from East Greenland are among the most mercury polluted species in the Arctic. It is unknown whether these levels are toxic to liver and kidney tissue. METHODS: We investigated the histopathological impact from anthropogenic long-range transported mercury on East Greenland polar bear liver (n = 59) and kidney (n = 57) tissues. RESULTS: Liver mercury levels ranged from 1.1–35.6 μg/g wet weight and renal levels ranged from 1–50 μg/g wet weight, of which 2 liver values and 9 kidney values were above known toxic threshold level of 30 μg/g wet weight in terrestrial mammals. Evaluated from age-correcting ANCOVA analyses, liver mercury levels were significantly higher in individuals with visible Ito cells (p < 0.02) and a similar trend was found for lipid granulomas (p = 0.07). Liver mercury levels were significantly lower in individuals with portal bile duct proliferation/fibrosis (p = 0.007) and a similar trend was found for proximal convoluted tubular hyalinisation in renal tissue (p = 0.07). CONCLUSION: Based on these relationships and the nature of the chronic inflammation we conclude that the lesions were likely a result of recurrent infections and ageing but that long-term exposure to mercury could not be excluded as a co-factor. The information is important as it is likely that tropospheric mercury depletion events will continue to increase the concentrations of this toxic heavy metal in the Sub Arctic and Arctic marine food webs

    Bordetella Adenylate Cyclase Toxin Mobilizes Its β2 Integrin Receptor into Lipid Rafts to Accomplish Translocation across Target Cell Membrane in Two Steps

    Get PDF
    Bordetella adenylate cyclase toxin (CyaA) binds the αMβ2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin ‘translocation intermediate’, which can be ‘locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the ‘intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the ‘translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol
    corecore