603 research outputs found

    Detection of a Moving Rigid Solid in a Perfect Fluid

    Get PDF
    In this paper, we consider a moving rigid solid immersed in a potential fluid. The fluid-solid system fills the whole two dimensional space and the fluid is assumed to be at rest at infinity. Our aim is to study the inverse problem, initially introduced in [3], that consists in recovering the position and the velocity of the solid assuming that the potential function is known at a given time. We show that this problem is in general ill-posed by providing counterexamples for which the same potential corresponds to different positions and velocities of a same solid. However, it is also possible to find solids having a specific shape, like ellipses for instance, for which the problem of detection admits a unique solution. Using complex analysis, we prove that the well-posedness of the inverse problem is equivalent to the solvability of an infinite set of nonlinear equations. This result allows us to show that when the solid enjoys some symmetry properties, it can be partially detected. Besides, for any solid, the velocity can always be recovered when both the potential function and the position are supposed to be known. Finally, we prove that by performing continuous measurements of the fluid potential over a time interval, we can always track the position of the solid.Comment: 19 pages, 14 figure

    Homogenization results for chemical reactive flows through porous media

    Get PDF
    This paper deals with the homogenization of a nonlinear problem mod-elllng chemica! reactive flows through periodically perforated domains. The chemical reactions take place on the walls of the porous médium. The effective behavior of these reactive flows is described by a new elliptic boundary-value problem contalning an extra zero-order term which captures the effect of the chemical reactions

    Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization

    Full text link
    We present modeling of the incompressible viscous flows in the domain containing an unconfined fluid and a porous medium. For such setting a rigorous derivation of the Beavers-Joseph-Saffman interface condition was undertaken by J\"ager and Mikeli\'c [SIAM J. Appl. Math. \rm 60 (2000), p. 1111-1127] using the homogenization method. So far the interface law for the pressure was conceived and confirmed only numerically. In this article we justify rigorously the pressure jump condition using the corresponding boundary layer

    Perceived Risk Reduction In E-commerce Environments

    Get PDF
    During the past three decades, the growth of e-commerce has presented marketers with many new arenas for research and application. Certainly e-commerce has become a significant portion of the world economy and in particular the consumer sector. As previous literature has consistently considered perceived risk as a major factor consumer purchase decisions, this research identifies several major components of consumer perceived risk (PR) and their normative implications in the e-commerce environmen

    Asymptotics for models of non-stationary diffusion in domains with a surface distribution of obstacles

    Get PDF
    We consider a time-dependent model for the diffusion of a substance through an incompressible fluid in a perforated domain ??, urn:x-wiley:mma:media:mma5323:mma5323-math-0001 with n?=?3,4. The fluid flows in a domain containing a periodical set of ?obstacles? (?\??) placed along an inner (n???1)?dimensional manifold urn:x-wiley:mma:media:mma5323:mma5323-math-0002. The size of the obstacles is much smaller than the size of the characteristic period ?. An advection term appears in the partial differential equation linking the fluid velocity with the concentration, while we assume a nonlinear adsorption law on the boundary of the obstacles. This law involves a monotone nonlinear function ? of the concentration and a large adsorption parameter. The ?critical adsorption parameter? depends on the size of the obstacles , and, for different sizes, we derive the time?dependent homogenized models. These models contain a ?strange term? in the transmission conditions on ?, which is a nonlinear function and inherits the properties of ?. The case in which the fluid velocity and the concentration do not interact is also considered for n???3.The authors would like to thank the anonymous referees for their careful reading of the manupscript and useful comments. The work has been partially supported by MINECO, MTM2013-44883-P

    Bloch Approximation in Homogenization and Applications

    Get PDF
    The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in this paper. As is well known, the homogenization process in a classical framework is concerned with the study of asymptotic behavior of solutions uεu^\varepsilon of boundary value problems associated with such operators when the period ε>0\varepsilon>0 of the coefficients is small. In a previous work by C. Conca and M. Vanninathan [SIAM J. Appl. Math., 57 (1997), pp. 1639--1659], a new proof of weak convergence as ε0\varepsilon\to 0 towards the homogenized solution was furnished using Bloch wave decomposition. Following the same approach here, we go further and introduce what we call Bloch approximation, which will provide energy norm approximation for the solution uεu^\varepsilon. We develop several of its main features. As a simple application of this new object, we show that it contains both the first and second order correctors. Necessarily, the Bloch approximation will have to capture the oscillations of the solution in a sharper way. The present approach sheds new light and offers an alternative for viewing classical results

    On the symbolic powers of binomial edge ideals

    Full text link
    We show that under some conditions, if the initial ideal in<(I)_<(I) of an ideal II in a polynomial ring has the property that its symbolic and ordinary powers coincide, then the ideal II shares the same property. We apply this result to prove the equality between symbolic and ordinary powers for binomial edge ideals with quadratic Gr\"obner basis

    A Model of Learning for Research in Information Systems Education

    Get PDF
    Educational researchers have long studied the role of the student in educational settings with the goal of improving learning outcomes. In this paper, we review constructs commonly employed in studies reported in the education literature undertaken to better understand how and why people learn. We then incorporate these constructs into a model of learning that we hope can be utilized as a starting point in further research in information systems education

    Powers of componentwise linear ideals

    Full text link
    We give criteria for graded ideals to have the property that all their powers are componentwise linear. Typical examples to which our criteria can be applied include the vertex cover ideals of certain finite graphs
    corecore