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HOMOGENIZATION RESULTS FOR CHEMICAL REACTIVE FLOWS
THROUGH POROUS MEDIA

C. CONCA, ].L. DIAZ, A. LINAN AND C. TIMOFTE

ABSTRACT. This paper deals with the homogenization of a nonlinear problem mod-
elling chemical reactive flows through periodically perforated domains. The chemical
reactions take place on the walls of the porous medium. The effective behavior of
these reactive flows is described by a new elliptic boundary-value problem containing
an extra zero-order term which captures the effect of the chemical reactions.

1. INTRODUCTION

The aim of this paper is to study the homogenization of some chemical reactive
flows through periodically perforated domains or porous media. We will focus our
attention on a nonlinear problem which describes the motion of a fluid reacting on
the boundary of a porous medium,

Let Q be an open bounded set in R" and let us perforate it by holes. As a result,
we obtain an open set Qf which will be referred to as being the perforated domain; €
represents a small parameter related to the characteristic size of the perforations.

The nonlinear problem studied in this paper concerns the stationary reactive flow
of a fluid confined in QF, of concentration uf, reacting on the boundary of the perfora-
tions. A simplified version of this problem can be written as follows:

—DeAuf=f in QF,
ouf .
(1.1) -Df—é—v— =aeg(u®) onS¢,
uw=0 on 0Q}.

Here, v is the exterior unit normal to Qf, a >0, f € L*(Q) and S¢ is the boundary of
our porous medium €\ Qf. Moreover, the fluid is assumed to be homogeneous and
isotropic, with a constant diffusion coefficient D¢ > 0.

The semilinear boundary condition on S° in problem (1.1) describes the chemical
reactions which take place locally at the interface between the reactive fluid and the
perforations. From strictly chemical point of view, this situation represents, equiva-
lently, the effective reaction on the walls of the porous medium between the fluid filling
QFf and a rigid solid part filling the holes.

The function g in (1.1) is assumed to be given. We shall address here the case of a
single-valued maximal monotone graph with g(0) = 0, i.e. the case in which g is the
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subdifferential of a convex lower semicontinuous function G. This situation is well
illustrated by the following important practical example, left as an open case in [7]:

glv)= lvlp-l v, 0<p<1 (Freundlichkinetics).

The exponent p is called the order of the reaction.
The existence and uniqueness of a weak solution of (1.1) can be settled by using the

classical theory of semilinear monotone problems (see, for instance, [1] and [9]). Asa
result, we know that there exists a unique weak solution uf € V€ n H?(Qf), where

VE={ve HH(QF) | v=00n 50k
When we associate with QF the following nonempty convex subset of V*:
(1.2) K= {ve V| Gw)ls € L' (S,
then u€ is also known to be characterized as being the unique solution of the following
variational problem:

For all v© € K€ find uf € K¢ such that

(-3 Dy | DufD(v*-uf)dx- fn fOF - uf)dx+auf, GO) - Guf)) 20,
Qf £

where yf is the linear form on Wol'1 (Q) defined by

(1, p)=¢ fs _pdo, Vge Wyl ().

From a geometrical point of view, we shall just consider periodic structures ob-
tained by removing periodically from Q, with period ¢Y (where Y is a given hyper-
rectangle in R”), an elementary hole T which has been appropriately rescaled and
which is strictly included in Y, i.e, Tc Y,

We shall prove that the solution uF, properly extended to the whole of 2, converges
to the unique solution of the following variational inequality:

[0T|
IY\T|

for u € Hj(Q) and for all v € H} (). Here, Q = ((q;;)) is the classical homogenized
matrix, whose entries are defined as follows:

a .
1 XJd )
|[Y\NT] Jy\r Oy;

in terms of the functions Xy [=1,...,n, solutions of the so-called cell problems

(1.4) LQDuD(v—u]dx;fnf(v—u)dx*a fQ(G(v)—G(u))dx

(1.5) q,'j=Df(5,'j+

-Ay,=0  inY\T,

(1.6) ______O(XHJ’:') =0 ondT,
ov

Xi Y -periodic.

Remark 1.1. For the case of a smooth function g, werefer to [4].
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The structure of the paper is as follows: first, let us mention that we shall just focus
on the case n > 3, which will be treated explicitly. The case n =2 is much more simpler
and we shall omit to treat it. Section 2 is devoted to the setting of our problem. In
Section 3 we formulate the main result of this paper. Section 4 contains some necessary
preliminary results, In the last section we give the proof of our main result.

Finally, notice that throughout the paper we denote by C a generic fixed strictly pos-
itive constant, whose value can change from line to line.

2. SETTING OF THE PROBLEM

Let Q be a smooth bounded connected open subset of R”* (n > 3) and let ¥ =
[0, 21 [x -+ x [0, be the representative cell in R”. Denote by T an open subset of Y
with smooth boundary 47 such that T < Y. We shall refer to T as being the elemen-
tary hole.

Let £ be a real parameter taking values in a sequence of positive numbers converging
to zero. For each ¢ and for any integer vector k € Z", set T}, the translated image of ¢ T
by the vector kil = (k) I3,..., knly)

TE =e(kl+ T).

The set T} represents the holes in R". Also, let us denote by T* the set of all the holes
contained in O, i.e. L
T*=\U{T{ | TEcQ, keZ™}.
Set
QF=0\TE,
Hence, QF is a periodically perforated domain with holes of size of the same order as

the period. Remark that the holes do not intersect the boundary 8Q2.
Let

SE=U{OTE ITEcQ, ke Z"}.
So
0QFf =0QuU -,
We shall also use the following notations:
lw| = the Lebesgue measure of any measurable subset w of R",
x,= the characteristic function of the set w,
|Y*|
1Y)’
Moreover, for an arbitrary function ¥ € I?{QFf), we shall denote by ¥ its extension by
zero inside the holes.

As already mentioned, we are interested in studying the behavior of the solution, in
such a perforated domain, of the following problem:

~DpAuf = f in QF,
a £
(2.2) =Dy “

ov
uf =0 on Q2.

(2.1)

Y*=Y\T and p=

= agg(ue) on SE,
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We shall treat the case in which the function g appearing in (2.2) is a single-valued

maximal monotone graph in R x R, satisfying the condition g(0) = 0. Moreover, if we

denote by D(g) the domain of g, i.e. D(g) = {£ € R| g($) # @}, then we suppose that

D(g) =R. We also assume that g is continuous and there exist C >0 and an exponent

g, with 0 € g < n/(n—2), such that

(2.3) |lgtwy| < Ca+ v,

This situation is well illustrated by the following important practical example:
gw)=tvP'y, 0<p<1l (Freundlichkinetics).

We know that in this case there exists a lower semicontinuous convex function G
from R to ] — oo, +00], G proper, i.e. G # +oo such that g is the subdifferential of G,
g =0G (G is an indefinite “integral” of g). Let G(v) = fy g(s)ds.

Let us introduce the functional space V¢ = {ve H'(Q°)| v =0 0ondQ}, with |v[ye =
IVl 2(qe, - Define the convex set
(2.4) K& ={ve V¢ | Gw)|s € L (55)}.

For a given function f e 12(Q) the weak solution of the problem (2.2) is also the unique
solution of the following variational inequality:
For all v* € K*find uf € K such that
2.5
@3] D; | Du*DW -uf) dx-—f FOf—uf)ydx+a(uf,GOvF) - Guf)) = 0.
Qf QFf

Notice that there exists a unique weak solution uf € V& n H2(QF) of the above varia-
tional inequality (see [1]).

3. THE MAIN RESULT

First, let us notice that it is well-known that the solution uf of the variational in-
equality (2.5) is also the unique solution of the minimization problem:

ufe Kf, J5(u®) = inf J*(v),
veKE
where )
JFly) = Efo |IDv|? dx + a{yf,Gv)) —f frdx.
or Qs
Introduce the following functional defined on H} (Q):

1 18T
IO —-f DvDvdx+ a—-———-f G(v) dx»f vdx.
2Ja Q [Y*|Ja Q !
The main result of this paper is the following:
Theorem 3.1. One can construct an extension PEuf of the solution u® of the variational
inequality (2.5) such that

PPuf — u weaklyin HY(Q),
where u is the unique solution of the minimization problem:

(3.1) Find ue Hy(Q) such that °(u)= inf J°(v).
veH} ()
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Moreover, G(u) € L' (Q). Here, Q = (g;;) is the classical homogenized matrix, whose en-
tries are defined as follows:

1 )
i

in terms of the functions x , i = 1,..., n, solutions of the so-called cell problems

~Ay, =0 inv*,

(3.3) ____B(XH}';') =0 on 0T,
ov '
X1 Y -periodic.

4. PRELIMINARY RESULTS

4.1. An extension result. The solution u* of problem (2.2) being defined only on QF,
we need to extend it to the whole of  to be able to state the convergence result. In
order to do that, let us recall the following well-known extension result (see [31):

Lemma 4.1.1. There exists P® € 2(L*(Q%); L2(Q)) n L(V; H} () a linear continuous
extension operator and a positive constant C, independent of €, such that

”PEVHLZ(Q) < Cl vl 2
and
1VPEv] 20y < CIVYI 2000,
foranyve VE.

An immediate consequence of the previous lemma is the following Poincaré’s in-
equality in V*:

Lemma 4.1.2. There exists a positive constant C, independent of €, such that
| Vlle(Qz) < C"VUHLZ(QC),
foranyve VE,

4.2. Aconvergenceresult, In order to get the effective behavior of our solution uf we
have to pass to the limit in (2.5). Let us introduce therefore, forany he L¥ (8T), 1 < §' <
oo, the linear form g} on WOI'S(Q) defined by

X
()= fs H(E)edo, voewg @,
with 1/s+1/s' = 1. Itis proved in [2] that
(4.1) pE —pp  stronglyin (W, ()Y,

where (pp, ) = pp Jq @dx, with gy = (/1Y) for h(y)do. In the particular case when
h e L™®(0T) or even h is constant, we have

Hp — Mp  stronglyin whee(,
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In what follows, we denote by p* the above introduced measure in the particular case
in which h = 1. Notice that in this case p,, becomes p; = [0T|/|Y|.

Let F be a continuously differentiable function, monotonously non-decreasing and
such that F(v) = 0 if and only if v = 0. We suppose that there exist a positive constant
C and an exponent g, with 0 < g < n/(n - 2), such that

(4.2) < C(1+!v?).

Let us prove now that for any ¢ € 2(2) and for any v© — v weakly in H} (Q2), we get

(4.3) @F(1f) — @F(v) weaklyin Wy (Q),
where
- 2n
9= gn-2)+n’
In order to prove (4.3), let us first note that
(4.4) sup | VF(v*)| 7 < 0.
Indeed, from the growth condition (4.2) imposed to F, we get
"1oF |7 ay|0v |7
e B 1‘+ €129 -
jﬂ 6xi(v) dx<Cfﬂ( |ve| ) 5in dx

<6(1+(L‘"£|qay dx)uy)(fn‘Vvsﬁa dx)lla,

where we have taken y and 6 such that g6 =2, 1/y+1/§ =1 and gqy = 2n/{n —2).
Notice that from here we get g = 2n/(g(n—2)+n). We also have g > 1 since0< g <
n/(n—2). Now, as

sup [|v° ”Lha-uﬂﬂ) <00,

we immediately get (4.4). Hence, to obtain (4.3}, it only remains to prove that
(4.5) F(®) —F(v) stronglyin L7(Q).
But this is just a consequence of the following well-known result (see [9]):
Theorem4.2.1. Let H:Q xR — R be a Carathéodory function, i.e.

(a) Forevery v the function H{-,v) is measurable with respect to x € Q.

(b) For every (a.e.) x € Q, the function H(x,-) is continuous with respect to v.
Moreover, if we assume that there exists a positive constant C such that

|H(x, v)l < CA+ ™,
withr =1 and t < oo, then the map v e L7 (Q) — H(x, v(x)) € L*(Q) is continuous in the
strong topologies.
Indeed, since
|F(v)| < C(L+ |7,

then by applying the above theorem for H(x,v) = F(v), t=g and r = 2n/(n-2)) -1,
with r' > 0 such that ¢ + 1 < r/¢ and using the compact injection H*(Q) — L7 () we
easily get (4.5).
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5. PROOF OF THE MAIN RESULT

This section is devoted to the proof of Theorem 3.1.

Proof. Let uf be the solution of the variational inequality (2.5) and let P€ 1€ be the ex-

tension of u* given by Lemma 4.1.1. It is not difficult to see that PZuf is bounded in
Hé (Q). So by extracting a subsequence, one has

(5.1) Pfuf —u weaklyin H;(Q).

Let ¢ € 2(Q). Classical regularity results imply x; € L*. The boundedness of x; and ¢
ensure that there exists M 2 0 such that

" 0x; an 12l < M.
Let
i [1s x
) F=p+) e—=(x)x.|=|
(5.2) =g deaxl(x)x,(e)
Then »* € K® and we can take it as a test function in (2.5). Moreaver, v* — ¢ strongly

in L2(Q).
Let us compute Dv®:

Dy —D(p+z_——(x)Dx( )+£ZD—(x)x( ]
So
D = 3 2L aer+ D)) + e 2 D301, (2,

where e;, 1 < i € n, are the elements of the canonical basis in R".
Using v¢ as a test function in (2.5) we can write

Dy Du"'Dvedxzf fwE—-u) dx+fo DufDuf dx—a{pf, G(vE)~G(u)).
QF ol (ol
In fact, we have

Dy f DP®u* (DvE)dx

(5.3)
;f f(v£~u£)dx+fo DufDuf dx— a(pf, G(vF) ~ G(uf)).
ar qs
Denote
(5.4) pQej= T fo (Dx +ej)dy,

where p = |Y*|/]Y|. Neglecting the term £} ; D3 (x)x (£) which actually tends

strongly to zero, we can immediately pass to the hrmt in the left-hand side of (5.3).
Hence

(5.5) Dy L DPEUEDIE dx — fn pQDuDgdx.
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It is not difficult to pass to the limit in the first term of the right-hand side of (5.3).
Indeed, since v® — ¢ strongly in L?(Q), we get

(5.6) f f(ve—ug)dx=ffxm(vf—PEuE)dx—»ffp((p—u)dx.
0% Q )

For the third term of the right-hand side of (5.3), by assuming the growth condition
(2.4) for the single-valued maximal monotone graph g and by using the preliminary
results from Section 4.2 (more precisely (4.3) written for G and for v* = Pfuf), we get

G(PEuf) — Glu)  weaklyin W,"7(Q)

which in combination with the convergence (4.1) written for k=1, leads to

0T}
£ €. £
{uf,G(Ptu ))—’—lYI LG(u)dx.

In a similar manner, we obtain
E’ €y ., G d
(K, Gv™) m f (@) dx
and hence we get
(5.7) a(u G(vf) - G(P* 5)}—-»61 7 f(G((p) G(w)dx.

It remains to pass to the limit in the second term of the right-hand side of (5.3) only.
We start by writting down the subdifferential inequality

(5.8) Dy | Du*Dufdx>Dy| Dw*Duwf dx+2fo Dwf(Duf - Dw*)dx,
QB Qt’ Q€
for any wf e H& (Q). We follow the same procedure as above and by choosing
dp X
£ ='"+ — -1,
wf=g 2,:8635; (x)xf(e)

where @ enjoys similar properties as the corresponding ¢, we may pass to the limit in
the right-hand side of inequality (5.8) and we get

ligningf DufDufdx = f pQDPD@pdx+ Zf pQD@(Du—Dy)dx,
- Q* Q Q
for any ¢ € 2(Q). Butsince u € H& (Q), by density, we conclude
(5.9) limintDy [ DufDutdx> [ pQDuDudx,
e—0 e Q
We put together (5.5)-(5.7) and (5.9) and obtain
LpQDthp dx= pr((p - 1) dx+f pQDuDudx - a—~—— f (G(p) — G(u)) dx,

for any p € 2(Q) and hence by density for any v € H; (Q).
So, finally, we get

fQDuD(u—-u)dx?ff(v—u)dx—alaﬂf(G(cp)~G(u))dx,
Q o) Y*|Ja

which gives exactly the limit problem (3.1). This ends the proof of Theorem 3.1. O
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Remark 5.1. We can treat in a similar manner the case of a multi-valued maximal
monotone graph, which includes various semilinear classical boundary-value prob-
lems such as Dirichlet or Neumann problems, Robin boundary conditions, Signorini’s
unilateral conditions, climatization problems (see, for instance, {1, 2, 6]). For the non-
stationary case, see also [5] and {8].

ACKNOWLEDGEMENTS

This work has been partially supported by Fondap through its Programme on Math-
ematical Mechanics,

The first author gratefully acknowledges Chilean and French Governments support
through the Scientific Committee Ecos-Conicyt.

The research of ].I. Diaz was partially supported by project REN2000-0766 of the
DGES (Spain). J.I. Diaz and A. Lifidn are members of the RTN HPRN-CT-2002-00274
of the EC.

The work of the fourth author is part of the European Research Training Network
HMS 2000, under contract HPRN-2000-00109.

- REFERENCES

(1) EL, BREZIS, Problémes unilatéraux, /. Math. Pures Appl, 51(1972), 1-168.

{2] D. CIORANESCU, P, DONATO, Homogénéisation du probléme de Neurnann non homogene dans des
ouverts perforés, Asymprotic Anal. 1{1988), 115-138,

(3] D. CIORANESCU, J. SAINT JEAN PAULIN, Homogenization in open sets with holes, J. Math. Anal. Appl.
71{1979), 590-607.

[4] C. CoNca, ].1. DIAZ, A. LINAN, C. TIMOFTE, Homogenization in chemical reactive flows, Electron. J.
Differential Equations 40(2004), 1-22.

{5] C.CoNca,].1. Dlaz, C. TIMOFTE, Effective chemical processes in porous media, Math. Models Methods
Appl. Sci, 13(2003), 1437-1462.

[6] C.Conca,F. MURAT, C. TIMOFTE, A generalized strange term in Signorini’s type problems, M2AN Mati.
Model Numer. Anal. 37(2003), 773-806.

{7] U. HORNUNG, Homogenization and Porous Media, Springer, New York, 1997.

{8] U. HORNUNG, W. JAGER, Diffusion, convection, adsorption and reaction of chemicals in porous media,
I. Differential Equations 92(1991), 189-225,

[9] I.L. LIONS, Quelques méthodes de résolution des problémes aux limites non linéaires, Gauthier-Villars,
Paris, 1969; Dunod, 2002.

DEPARTAMENTO DE INGENIERIA MATEMATICA AND CENTRO DE MODELAMIENTO MATEMATICO, UMR 2071
CNRS-UCHILE, FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS, UNIVERSIDAD DE CHILE, CASILLA170/3,
SANTIAGO, CHILE; E-mail: cconca@dim.uchile.cl

DEPARTAMENTO DE MATEMATICAAPLICADA, FACULTAD DE MATEMATICAS, UNIVERSIDAD COMPLUTENSE,
28040 MADRID, SPAIN; E-mall: jidiaz@ucm.es

ESCUELAT.S. DE INGENIEROS AERONAUTICOS, UNIVERSIDAD POLITECNICADE MADRID, MADRID, SPAIN;
E-mail: linan@tupi.dmt.upm.es

DEPARTMENT OF MATHEMATICS, FACULTY OF PHYSICS, UNIVERSITY OF BUCHAREST, P.O. Box MG-11,
BUCHAREST-MAGURELE, ROMANIA; B-mail: claudiatimofte@hotmail.com


mailto:cconca@dim.uchile.cl
mailto:jidiaz@ucm.es
mailto:linan@tupi.dmt.upm.es
mailto:claudiatimofte@hotmail.com

