In this paper, we consider a moving rigid solid immersed in a potential
fluid. The fluid-solid system fills the whole two dimensional space and the
fluid is assumed to be at rest at infinity. Our aim is to study the inverse
problem, initially introduced in [3], that consists in recovering the position
and the velocity of the solid assuming that the potential function is known at
a given time. We show that this problem is in general ill-posed by providing
counterexamples for which the same potential corresponds to different positions
and velocities of a same solid. However, it is also possible to find solids
having a specific shape, like ellipses for instance, for which the problem of
detection admits a unique solution. Using complex analysis, we prove that the
well-posedness of the inverse problem is equivalent to the solvability of an
infinite set of nonlinear equations. This result allows us to show that when
the solid enjoys some symmetry properties, it can be partially detected.
Besides, for any solid, the velocity can always be recovered when both the
potential function and the position are supposed to be known. Finally, we prove
that by performing continuous measurements of the fluid potential over a time
interval, we can always track the position of the solid.Comment: 19 pages, 14 figure