1,116 research outputs found

    IC 225: a dwarf elliptical galaxy with a peculiar blue core

    Full text link
    We present the discovery of a peculiar blue core in the elliptical galaxy IC 225 by using images and spectrum from the Sloan Digital Sky Survey (SDSS). The outer parts of the surface brightness profiles of u-, g-, r-, i- and z-band SDSS images for IC 225 are well fitted with an exponential function. The fitting results show that IC 225 follows the same relations between the magnitude, scale length and central surface brightness for dwarf elliptical galaxies. Its absolute blue magnitude (M_B) is -17.14 mag, all of which suggest that IC 225 is a typical dwarf elliptical galaxy. The g-r color profile indicates a very blue core with a radius of 2 arcseconds, which is also clearly seen in the RGB image made of g-, r- and i-band SDSS images. The SDSS optical spectrum exhibits strong and very narrow nebular emission lines. The metal abundances derived by the standard methods, which are 12+log(O/H) = 8.98, log(N/O) = -0.77 and 12+log(S+/H+) = 6.76, turn out to be significantly higher than that predicted by the well-known luminosity-metallicity relation. After carefully inspecting the central region of IC 225, we find that there are two distinct nuclei, separated by 1.4 arcseconds, the off-nucleated one is even bluer than the nucleus of IC 225. The asymmetric line profiles of higher-order Balmer lines indicate that the emission lines are bluer shifted relative to the absorption lines, suggesting that the line emission arises from the off-center core, whose nature is a metal-rich Hii region. To the best of our knowledge, it is the first high-metallicity Hii region detected in a dwarf elliptical galaxy.Comment: 7 figures, accepted for publication in A

    Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases

    Full text link
    Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-integer spin) atoms offer exciting opportunities to directly test theoretical models of related many-body fermion systems that are inaccessible to experimental manipulation, such as neutron stars and quark-gluon plasmas. However, the microscopic interactions between fermions are potentially quite complex, and experiments in ultracold gases to date cannot clearly distinguish between the qualitatively different microscopic models that have been proposed. Here, we theoretically demonstrate that optical measurements of electron spin noise -- the intrinsic, random fluctuations of spin -- can probe the entangled quantum states of ultracold fermionic atomic gases and unambiguously reveal the detailed nature of the interatomic interactions. We show that different models predict different sets of resonances in the noise spectrum, and once the correct effective interatomic interaction model is identified, the line-shapes of the spin noise can be used to constrain this model. Further, experimental measurements of spin noise in classical (Boltzmann) alkali vapors are used to estimate the expected signal magnitudes for spin noise measurements in ultracold atom systems and to show that these measurements are feasible

    A priori analysis of subgrid-scale models for shock wave / boundary layer interaction

    Get PDF
    This study addresses the subgrid-scale modeling issue for large eddy simulation of shock wave / boundary layer interaction. By using a reference flow database, obtained by direct numerical simulation, a priori testing of the most prominent LES models is carried out. The various modelling and filtering approaches are discussed and compared, leading to suggest a priori the most appropriate closure strategy

    Spin degree of freedom in two dimensional exciton condensates

    Get PDF
    We present a theoretical analysis of a spin-dependent multicomponent condensate in two dimensions. The case of a condensate of resonantly photoexcited excitons having two different spin orientations is studied in detail. The energy and the chemical potentials of this system depend strongly on the spin polarization . When electrons and holes are located in two different planes, the condensate can be either totally spin polarized or spin unpolarized, a property that is measurable. The phase diagram in terms of the total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review Letter

    Density and spin response functions in ultracold fermionic atom gases

    Full text link
    We propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the momentum distribution of the density and spin response functions allows one to access separately the normal and anomalous densities. The change in sign at low momentum transfer of the density response function signals the transition between a BEC and a BCS regimes, characterized by small and large pairs, respectively. This change in sign of the density response function represents an unambiguous signature of the BEC to BCS crossover. Also, we predict spin rotational symmetry-breaking in this system

    The Crab pulsar light curve in the soft gamma ray range: FIGARO II results

    Get PDF
    The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase

    Acoustic attenuation rate in the Fermi-Bose model with a finite-range fermion-fermion interaction

    Full text link
    We study the acoustic attenuation rate in the Fermi-Bose model describing a mixtures of bosonic and fermionic atom gases. We demonstrate the dramatic change of the acoustic attenuation rate as the fermionic component is evolved through the BEC-BCS crossover, in the context of a mean-field model applied to a finite-range fermion-fermion interaction at zero temperature, such as discussed previously by M.M. Parish et al. [Phys. Rev. B 71, 064513 (2005)] and B. Mihaila et al. [Phys. Rev. Lett. 95, 090402 (2005)]. The shape of the acoustic attenuation rate as a function of the boson energy represents a signature for superfluidity in the fermionic component

    vHOG, a multispecies vertebrate ontology of homologous organs groups

    Get PDF
    Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species

    Statistical Evaluation of the Shock Wave  Boundary Layer Interaction Phenomenon

    Get PDF
    Turbulent velocity and thermal correlations from direct numerical simulation data of a spatially growing compressible turbulent boundary layer interacting with an impinging shock are discussed. The cross-stream variation of the velocity second-moments and the thermal fluxes one boundary layer thickness upstream of the shock impingement point are discussed. Other correlations are examined to further statistically quantify the effect of the oblique shock-turbulence interaction

    Sondage archéologique sur l'oppidum du Camp de César à Laudun-l'Ardoise. Étude d'une structure du Haut-Empire réutilisée au cours de l'Antiquité tardive.

    No full text
    National audienceDans le cadre des recherches sur les dynamiques de peuplement dans la basse vallée de la Cèze, le sondage réalisé dans cette structure en bordure orientale de l'oppidum du Camp de César à Laudun-l'Ardoise (Gard), a permis d'établir sa construction au cours du Ier siècle de notre ère et de sa réfection au cours des Ve-VIe siècles. L'abondance de mobilier céramique tardo-républicain, et du Haut-Empire, au sein du bâti ou en stratigraphie, ne permettent pas de dater exclusivement cette structure de l'Antiquité tardive, bien que les couches tardo-antiques directement au contact de l'affleurement rocheux, sont un terminus post quem recevable pour la datation de la réfection du bâtiment. Il semble qu'au cours des Ve-VIe siècles de nouveaux constructeurs ont procédé à des terrassements mettant à jour les maçonneries préexistantes du Ier siècle, qui ont alors été réutilisées
    corecore