25 research outputs found

    Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics

    Full text link
    We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for ν=1/2\nu=1/2 and 1/31/3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.Comment: Title change, enhanced Supplemental Material, almost published version (to appear in Phys. Rev. Lett.

    Two-dimensional repulsive Fermi polarons with short and long-range interactions

    Get PDF
    We study the repulsive polaron problem in a two-component two-dimensional system of fermionic atoms. We use two different interaction models: a short-range (hard-disk) potential and a dipolar potential. In our approach, all the atoms have the same mass and we consider the system to be composed of a uniform bath of a single species and a single atomic impurity. We use the diffusion Monte Carlo method to evaluate polaron properties such as its chemical potential and pair distribution functions, together with a discussion on the deficit of volume induced by the impurity. We also evaluate observables that allow us to determine the validity of the quasi-particle picture: the quasi-particle residue and the effective mass of the polaron. Employing two different potentials allows us to identify the universality regime, where the properties depend only on the gas parameter nas2n a_s^2 fixed by the bath density and the two-dimensional scattering length

    Fusion channels of non-Abelian anyons from angular-momentum and density-profile measurements

    Full text link
    We present a method to characterize non-Abelian anyons that is based only on static measurements and that does not rely on any form of interference. For geometries where the anyonic statistics can be revealed by rigid rotations of the anyons, we link this property to the angular momentum of the initial state. We test our method on the paradigmatic example of the Moore-Read state, that is known to support excitations with non-Abelian statistics of Ising type. As an example, we reveal the presence of different fusion channels for two such excitations, a defining feature of non-Abelian anyons. This is obtained by measuring density-profile properties, like the mean square radius of the system or the depletion generated by the anyons. Our study paves the way to novel methods for characterizing non-Abelian anyons, both in the experimental and theoretical domains.Comment: 6+10 pages, 2+3 figures -- revised text and Supp. Mat. -- to be published in Phys. Rev. Let

    Liquid-solid transitions in the three-body hard-core model

    Full text link
    We determine the phase diagram for a generalisation of two-and three-dimensional hard spheres: a classical system with three-body interactions realised as a hard cut-off on the mean-square distance for each triplet of particles. Quantum versions of this model are important in the context of the unitary Bose gas, which is currently under close theoretical and experimental scrutiny. In two dimensions, the three-body hard-core model possesses a conventional atomic liquid phase and a peculiar solid phase formed by dimers. These dimers interact effectively as hard disks. In three dimensions, the solid phase consists of isolated atoms that arrange in a simple-hexagonal lattice.Comment: 6 pages, 8 figures; reorganized introduction, expanded 3D sectio

    Two-dimensional Mixture of Dipolar Fermions: Equation of State and Magnetic Phases

    Get PDF
    We study a two-component mixture of fermionic dipoles in two dimensions at zero temperature, interacting via a purely repulsive 1/r31/r^3 potential. This model can be realized with ultracold atoms or molecules, when their dipole moments are aligned in the confinement direction orthogonal to the plane. We characterize the unpolarized mixture by means of the Diffusion Monte Carlo technique. Computing the equation of state, we identify the regime of validity for a mean-field theory based on a low-density expansion and compare our results with the hard-disk model of repulsive fermions. At high density, we address the possibility of itinerant ferromagnetism, namely whether the ground state can be fully polarized in the fluid phase. Within the fixed-node approximation, we show that the accuracy of Jastrow-Slater trial wave functions, even with the typical two-body backflow correction, is not sufficient to resolve the relevant energy differences. By making use of the iterative-backflow improved trial wave functions, we observe no signature of a fully-polarized ground state up to the freezing density.Comment: 12 pages, 6 figure

    Two-dimensional Mixture of Dipolar Fermions: Equation of State and Magnetic Phases

    Get PDF
    We study a two-component mixture of fermionic dipoles in two dimensions at zero temperature, interacting via a purely repulsive 1/r31/r^3 potential. This model can be realized with ultracold atoms or molecules, when their dipole moments are aligned in the confinement direction orthogonal to the plane. We characterize the unpolarized mixture by means of the Diffusion Monte Carlo technique. Computing the equation of state, we identify the regime of validity for a mean-field theory based on a low-density expansion and compare our results with the hard-disk model of repulsive fermions. At high density, we address the possibility of itinerant ferromagnetism, namely whether the ground state can be fully polarized in the fluid phase. Within the fixed-node approximation, we show that the accuracy of Jastrow-Slater trial wave functions, even with the typical two-body backflow correction, is not sufficient to resolve the relevant energy differences. By making use of the iterative-backflow improved trial wave functions, we observe no signature of a fully-polarized ground state up to the freezing density.Comment: 12 pages, 6 figure

    Scalable spin squeezing in a dipolar Rydberg atom array

    Get PDF
    The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems in order to enhance the precision of measurements beyond the standard quantum limit. To do so, one can reshape the quantum projection noise -- a strategy known as squeezing. In the context of many-body spin systems, one typically utilizes all-to-all interactions (e.g. the one-axis twisting model) between the constituents to generate the structured entanglement characteristic of spin squeezing. Motivated by recent theoretical work, here we explore the prediction that short-range interactions -- and in particular, the two-dimensional dipolar XY model -- can also enable the realization of scalable spin squeezing. Working with a dipolar Rydberg quantum simulator of up to 100 atoms, we demonstrate that quench dynamics from a polarized initial state lead to spin squeezing that improves with increasing system size up to a maximum of -3.5 dB (prior to correcting for detection errors, or approximately -5 dB after correction). Finally, we present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions, we demonstrate the ability to extend the lifetime of the squeezed state by freezing its dynamics.Comment: 12 pages, 10 figure

    De la physique atomique à peu de corps à la physique statistique à N-corps : le gaz de Bose unitaire et le modèle de cœur dur à trois corps

    No full text
    Ultracold atomic gases offer unprecedented possibilities to realize and manipulate quantum systems. The control on interparticle interactions allows to reach the strongly-interacting regime, with both fermionic and bosonic atomic species. In the unitary limit, where the interaction strength is at its maximum, universal properties emerge. For bosonic atoms, these include the Efimov effect, the surprising existence of an infinite sequence of three-body bound states. In this thesis, we have studied a system of unitary bosons. Starting from the two- and three-body cases, we have shown that the chosen model correctly captures the universal features of the Efimov effect. For the corresponding many-body problem, we have developed a quantum Monte Carlo algorithm capable of realizing the different thermodynamic phases in which the system may exist: The high-temperature normal gas, Bose-Einstein condensate, and Efimov liquid. A single ingredient of our model would remain relevant in the infinite-temperature limit, namely the three-body hard-core repulsion, which constitutes a generalization of the classical hard-sphere potential. For this model, we have proposed a solution to the two- and three-dimensional packing problem, based on an analytical ansatz and on the simulated-annealing technique. Extending these results to finite pressure showed that the system has a discontinuous melting transition, which we identified through the Monte Carlo method.Les gaz d'atomes ultrafroids offrent des possibilités sans précédent pour la réalisation et la manipulation des systèmes quantiques. Le contrôle exercé sur les interactions entre particules permet d'atteindre le régime de fortes interactions, pour des espèces d'atomes à la fois fermioniques et bosoniques. Dans la limite unitaire, où la force d'interaction est à son maximum, des propriétés universelles émergent. Pour les atomes bosoniques, celles-ci comprennent l'effet Efimov, l'existance surprenante d'une séquence infinie d'états liés à trois corps. Dans cette thèse, nous avons étudiés un système de bosons unitaires. Partant des cas à deux et à trois corps, nous avons montrés que le modèle choisi capturait correctement les caractéristiques universelles de l'effet Efimov. Pour le modèle à N-corps, nous avons développé un algorithme de Monte Carlo quantique capable de réaliser les différentes phases thermodynamiques du système : gaz normal à haute-température, condensat de Bose-Einstein, et liquide d'Efimov. Un unique composant de notre modèle resterait pertinent à la limite de température infinie, à savoir la répulsion corps dur à trois corps, qui constitue une généralisation du potentiel classique entre sphères dures. Pour ce modèle, nous avons proposé une solution au problème d'empilement compact en deux et trois dimensions, fondée sur une Ansatz analytique et sur la technique de recuit simulé. En étendant ces résultats à une situation de pression finie, nous avons montré que le système présente une transition de fusion discontinue, que nous avons identifié à travers la méthode de Monte Carlo

    anneal: Release 1.0

    No full text
    <p>Anneal is a python implementation of a general-purpose simulated-annealing algorithm for optimization. The optimization procedure is decoupled from the optimization problem, so that it can be used in a large set of different cases.</p
    corecore