5 research outputs found

    Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management

    Get PDF
    To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01

    Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India

    Get PDF
    Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan (‘water self-reliance mission’). Policy reform emphasising recharge can contribute to water security and yield socio-economic outcomes through a systemic understanding of how the water system functions, and by connecting goals and budgets across multiple, currently fragmented policy areas. The underpinning principles of this necessary paradigm shift are proven and have wider geographic relevance, though context-specific research is required to underpin robust policy and practical implementation

    Ecoregional Planning

    No full text
    corecore