137 research outputs found

    Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures

    Get PDF
    The phenylpropanoid and flavonoid families include thousands of specialized metabolites that influence a wide range of processes in plants, including seed dispersal, auxin transport, photoprotection, mechanical support and protection against insect herbivory. Such metabolites play a key role in the protection of plants against abiotic stress, in many cases through their well-known ability to inhibit the formation of reactive oxygen species (ROS). However, the precise role of specific phenylpropanoid and flavonoid molecules is unclear. We therefore investigated the role of specific anthocyanins (ACs) and other phenylpropanoids that accumulate in carrot cells cultivated in vitro, focusing on their supposed ability to protect cells from heat stress. First we characterized the effects of heat stress to identify quantifiable morphological traits as markers of heat stress susceptibility. We then fed the cultures with precursors to induce the targeted accumulation of specific compounds, and compared the impact of heat stress in these cultures and unfed controls. Data modeling based on Projection to Latent Structures (PLS) regression revealed that metabolites containing coumaric or caffeic acid, including ACs, correlate with less heat damage. Further experiments suggested that one of the cellular targets damaged by heat stress and protected by these metabolites is the actin microfilament cytoskeleton

    Electric fields in plasmas under pulsed currents

    Full text link
    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for 3D spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously.Comment: 13 pages, 13 figures, submitted to PR

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to Q^2 = 8.5 GeV^2

    Full text link
    Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleon's quark constituents; indeed, recent proton data have attracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime

    Narcissism and the Strategic Pursuit of Short-Term Mating: Universal Links across 11 World Regions of the International Sexuality Description Project-2

    Get PDF
    Previous studies have documented links between sub-clinical narcissism and the active pursuit of short-term mating strategies (e.g., unrestricted sociosexuality, marital infidelity, mate poaching). Nearly all of these investigations have relied solely on samples from Western cultures. In the current study, responses from a cross-cultural survey of 30,470 people across 53 nations spanning 11 world regions (North America, Central/South America, Northern Europe, Western Europe, Eastern Europe, Southern Europe, Middle East, Africa, Oceania, Southeast Asia, and East Asia) were used to evaluate whether narcissism (as measured by the Narcissistic Personality Inventory; NPI) was universally associated with short-term mating. Results revealed narcissism scores (including two broad factors and seven traditional facets as measured by the NPI) were functionally equivalent across cultures, reliably associating with key sexual outcomes (e.g., more active pursuit of short-term mating, intimate partner violence, and sexual aggression) and sex-related personality traits (e.g., higher extraversion and openness to experience). Whereas some features of personality (e.g., subjective well-being) were universally associated with socially adaptive facets of Narcissism (e.g., self-sufficiency), most indicators of short-term mating (e.g., unrestricted sociosexuality and marital infidelity) were universally associated with the socially maladaptive facets of narcissism (e.g., exploitativeness). Discussion addresses limitations of these cross-culturally universal findings and presents suggestions for future research into revealing the precise psychological features of narcissism that facilitate the strategic pursuit of short-term mating

    An Obligatory Role of Mind Bomb-1 in Notch Signaling of Mammalian Development

    Get PDF
    Background. The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood. Methodology/Principal Findings. Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2-1- mice were viable and grossly normal. In contrast, conditional inactivation of MW in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants. Conclusions/Significance. Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.open504

    Multidisciplinary management of elderly patients with rectal cancer: recommendations from the SICG (Italian Society of Geriatric Surgery), SIFIPAC (Italian Society of Surgical Pathophysiology), SICE (Italian Society of Endoscopic Surgery and new technologies), and the WSES (World Society of Emergency Surgery) International Consensus Project

    Get PDF
    Background and aims: Although rectal cancer is predominantly a disease of older patients, current guidelines do not incorporate optimal treatment recommendations for the elderly and address only partially the associated specific challenges encountered in this population. This results in a wide variation and disparity in delivering a standard of care to this subset of patients. As the burden of rectal cancer in the elderly population continues to increase, it is crucial to assess whether current recommendations on treatment strategies for the general population can be adopted for the older adults, with the same beneficial oncological and functional outcomes. This multidisciplinary experts’ consensus aims to refine current rectal cancer-specific guidelines for the elderly population in order to help to maximize rectal cancer therapeutic strategies while minimizing adverse impacts on functional outcomes and quality of life for these patients. Methods: The discussion among the steering group of clinical experts and methodologists from the societies’ expert panel involved clinicians practicing in general surgery, colorectal surgery, surgical oncology, geriatric oncology, geriatrics, gastroenterologists, radiologists, oncologists, radiation oncologists, and endoscopists. Research topics and questions were formulated, revised, and unanimously approved by all experts in two subsequent modified Delphi rounds in December 2020–January 2021. The steering committee was divided into nine teams following the main research field of members. Each conducted their literature search and drafted statements and recommendations on their research question. Literature search has been updated up to 2020 and statements and recommendations have been developed according to the GRADE methodology. A modified Delphi methodology was implemented to reach agreement among the experts on all statements and recommendations. Conclusions: The 2021 SICG-SIFIPAC-SICE-WSES consensus for the multidisciplinary management of elderly patients with rectal cancer aims to provide updated evidence-based statements and recommendations on each of the following topics: epidemiology, pre-intervention strategies, diagnosis and staging, neoadjuvant chemoradiation, surgery, watch and wait strategy, adjuvant chemotherapy, synchronous liver metastases, and emergency presentation of rectal cancer

    Measurements of Non-Singlet Moments of the Nucleon Structure Functions and Comparison to Predictions from Lattice QCD for Q2=4Q^2 = 4 GeV2\rm GeV^2

    Get PDF
    We present extractions of the nucleon non-singlet moments utilizing new precision data on the deuteron F2F_2 structure function at large Bjorken-xx determined via the Rosenbluth separation technique at Jefferson Lab Experimental Hall C. These new data are combined with a complementary set of data on the proton previously measured in Hall C at similar kinematics and world data sets on the proton and deuteron at lower xx measured at SLAC and CERN. The new Jefferson Lab data provide coverage of the upper third of the xx range, crucial for precision determination of the higher moments. In contrast to previous extractions, these moments have been corrected for nuclear effects in the deuteron using a new global fit to the deuteron and proton data. The obtained experimental moments represent an order of magnitude improvement in precision over previous extractions using high xx data. Moreover, recent exciting developments in Lattice QCD calculations provide a first ever comparison of these new experimental results with calculations of moments carried out at the physical pion mass, as well as a new approach which first calculates the quark distributions directly before determining moments
    corecore