426 research outputs found

    Functions with Prescribed Best Linear Approximations

    Get PDF
    A common problem in applied mathematics is to find a function in a Hilbert space with prescribed best approximations from a finite number of closed vector subspaces. In the present paper we study the question of the existence of solutions to such problems. A finite family of subspaces is said to satisfy the \emph{Inverse Best Approximation Property (IBAP)} if there exists a point that admits any selection of points from these subspaces as best approximations. We provide various characterizations of the IBAP in terms of the geometry of the subspaces. Connections between the IBAP and the linear convergence rate of the periodic projection algorithm for solving the underlying affine feasibility problem are also established. The results are applied to problems in harmonic analysis, integral equations, signal theory, and wavelet frames

    There is no variational characterization of the cycles in the method of periodic projections

    Get PDF
    The method of periodic projections consists in iterating projections onto mm closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of m≥3m\geq 3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms that minimize smooth convex functions over a product of convex sets are also discussed

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    PROCESSING STATIONARY NOISE: MODEL AND PARAMETER SELECTION IN VARIATIONAL METHODS.

    Get PDF
    International audienceAdditive or multiplicative stationary noise recently became an important issue in applied fields such as microscopy or satellite imaging. Relatively few works address the design of dedicated denoising methods compared to the usual white noise setting. We recently proposed a variational algorithm to address this issue. In this paper, we analyze this problem from a statistical point of view and then provide deterministic properties of variational formulations. In the first part of this work, we demonstrate that in many practical problems, the noise can be assimilated to a colored Gaussian noise. We provide a quantitative measure of the distance between a stationary process and the corresponding Gaussian process. In the second part, we focus on the Gaussian setting and analyze denoising methods which consist of minimizing the sum of a total variation term and an l2 data fidelity term. While the constrained formulation of this problem allows to easily tune the parameters, the Lagrangian formulation can be solved more efficiently since the problem is strongly convex. Our second contribution consists in providing analytical values of the regularization parameter in order to approximately satisfy Morozov's discrepancy principle

    Asymptotic behavior of compositions of under-relaxed nonexpansive operators

    Get PDF
    In general there exists no relationship between the fixed point sets of the composition and of the average of a family of nonexpansive operators in Hilbert spaces. In this paper, we establish an asymptotic principle connecting the cycles generated by under-relaxed compositions of nonexpansive operators to the fixed points of the average of these operators. In the special case when the operators are projectors onto closed convex sets, we prove a conjecture by De Pierro which has so far been established only for projections onto affine subspaces

    Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

    Full text link
    This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fields. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A merit of this approach is its flexibility: for example, all compressed sensing problems can be solved via this approach. These include models with objective functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or a combination thereof. In addition, the paper also introduces a number of technical contributions such as a novel continuation scheme, a novel approach for controlling the step size, and some new results showing that the smooth and unsmoothed problems are sometimes formally equivalent. Combined with our framework, these lead to novel, stable and computationally efficient algorithms. For instance, our general implementation is competitive with state-of-the-art methods for solving intensively studied problems such as the LASSO. Further, numerical experiments show that one can solve the Dantzig selector problem, for which no efficient large-scale solvers exist, in a few hundred iterations. Finally, the paper is accompanied with a software release. This software is not a single, monolithic solver; rather, it is a suite of programs and routines designed to serve as building blocks for constructing complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This version has updated reference

    Range resolution improvement in passive bistatic radars using nested FM channels and least squares approach

    Get PDF
    One of the main disadvantages of using commercial broadcasts in a Passive Bistatic Radar (PBR) system is the range resolution. Using multiple broadcast channels to improve the radar performance is offered as a solution to this problem. However, it suffers from detection performance due to the side-lobes that matched filter creates for using multiple channels. In this article, we introduce a deconvolution algorithm to suppress the side-lobes. The two-dimensional matched filter output of a PBR is further analyzed as a deconvolution problem. The deconvolution algorithm is based on making successive projections onto the hyperplanes representing the time delay of a target. Resulting iterative deconvolution algorithm is globally convergent because all constraint sets are closed and convex. Simulation results in an FM based PBR system are presented. © 2015 SPIE

    HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

    Full text link
    We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method for the classical SVM in the second phase. Both SVM formulations are adapted to knowledge incorporation. Our proposed algorithm addresses the challenges of automatic feature selection, high optimization accuracy, and algorithmic flexibility for taking advantage of prior knowledge. We demonstrate the effectiveness and efficiency of our algorithm and compare it with existing methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8) Conference, 201
    • …
    corecore